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Abstract. In software-based generative design, a user specifies goals expressed as objectives and constraints to a software
application and the application returns a set of feasible and/or optimal design solutions. For problems involving discrete design
variables, such as in configuration design, searching the design space is often computationally intractable. Therefore, in the
context of the configuration design of mechanical assemblies, we are investigating the use of ontologies to model and reason
about designs while providing the ability to more efficiently prune infeasible designs. In this paper, we present an ontology
to specify connection, parthood, and shapes in mechanical assemblies, so that the constraints of feasible configurations can be
logically expressed and used during generative design. The ontology extends the Ground Mereotopology (MT) of Casati and
Varzi to a multi-dimensional mereotopology and combines it with a qualitative shape ontology based on the Hilbert’s axiomatic
theory of geometry. Relationships between equi-dimensional individuals are captured by MT, while individuals with different
dimensions are mereotopologically independent and are related by incidence relations. The proposed ontology is a module in
the larger effort to develop an overarching PhysicalWorld Ontology. We demonstrate the application of the proposed ontology
in specifying properties of suspension systems and mechanical joints.
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1. Introduction

One of the emerging trends in manufacturing is the realization of software-based generative design: a
user specifies design goals in the form of objectives and constraints and a software application returns
a set of feasible and/or optimal design solutions. In the engineering design literature, notions such as
“design optimization”, “design synthesis”, or “design automation” (Radford and Gero, 1987; Papalam-
bros and Wilde, 2000; Antonsson and Cagan, 2005; Chakrabarti et al., 2011) have been used to describe
research endeavors taken to enable such a step in a design work-flow.

While a wide variety of computational algorithms have been applied for generative design, they all
share the common challenge. For almost all design problems, the number of solutions is extremely large
and exploring even a small portion of the design space is computationally intractable. This challenge
is especially prominent when the design problem involves discrete variables such as in a configuration
design problem, where the goal is to compose a set of components via particular connections into an
assembly that produces desired behaviors (Mittal and Frayman, 1989; Wielinga and Schreiber, 1997;
Brown, 1998; Levin, 2009). In mechanical engineering, the challenge is even more significant because
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evaluation of a single candidate design solution may require physics-based simulation (e.g., running a
multi-body dynamics simulation) which is expensive and represents a black-box objective function.

One of the key approaches taken to solve configuration design problems is to limit the search space
to regions containing feasible solutions through the use of constraint programming techniques (e.g.,
O’Sullivan (1999); Fleishanderl et al. (1998)). In this approach, constraints corresponding to restrictions
on the values that sets of variables can take on are modeled and imposed to reduce the number of
possible designs. However, such constraints must be carefully formulated using quantitative variables
with a predefined set of arithmetic and logical operators. An alternative, also well-known, approach is
to use shape or generative grammars (Stiny, 1980), which specify rules to modify a given design, within
a generate-and-test framework (Shea et al., 1997; Schmidt et al., 2000; McKay et al., 2012). While the
rules are intended to produce only feasible solutions, they are not proven to be complete and so may
result in a partial investigation of the design space.

In contrast, one may ignore feasibility and employ evolutionary search techniques, such as genetic al-
gorithms, which have been successful in searching a large design space in some engineering applications
(Deb and Goyal, 1996; Man et al., 1996). However, in our experience the ratio of feasible solutions to
infeasible solutions in a typical mechanical configuration design problem is so small that extremely fast
pruning operations are needed: it appears necessary, in fact, to reason directly about feasibility.

Considering these challenges, we are investigating the use of logical ontologies to model qualitative
constraints and to prune infeasible designs during search. For example, a model of feasible designs could
be generated based on logical axioms, which would represent a smaller sub-space that needs to be ex-
plored by a constraint programming solver. Feasible models could be defined as those satisfying logical
statements related to physical structures such as “All components must be connected to each other” or
physical behaviors such as “This particular component shall not move in the horizontal direction”, which
could reduce the need to run physics-based simulation during search.

In this paper, we present an ontology, called the Assembly Ontology, a module of an overarching
ontology called the PhysicalWorld Ontology which is under development. The Assembly Ontology is
developed to specify connection, parthood, shape, and boundary constraints for a generative design soft-
ware tool. It extends the Ground Mereotopology (MT) of Casati and Varzi (1999) to a multi-dimensional
mereotopology and combines it with a qualitative shape ontology developed based on the Hilbert’s ax-
iomatic theory of geometry (Hilbert, 1902). In the current work, we evaluate the proposed ontology by
representing the qualitative properties of feasible mechanical assemblies, using three types of suspension
systems as examples. The consistency of the Assembly Ontology has been verified using the automated
theorem prover Prover9 (McCune, 2010).

The balance of the paper is organized as follows: we begin by a short overview of the the Physical-
World Ontology in Section 2 and then review related work in Section 3. Section 4 presents a motivating
use case of the generative design of a suspension system and discusses the potential applications of the
PhysicalWorld Ontology to this use case. In Section 5 we discuss the fundamental ontological commit-
ments and choices for the Assembly Ontology. Section 6 presents the axiomatization of the Assembly
Ontology based on the semantic requirements of Section 5. We conclude the paper by using the Assem-
bly Ontology to axiomatize three types of suspension systems in Section 7.

2. An Overview of the PhysicalWorld Ontology

The PhysicalWorld Ontology consists of a suite of ontologies we are developing that aims to axioma-
tize concepts and properties required for representation and reasoning about physical domains (Aameri
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and Gruninger, 2017). Within these ontologies a physical entity is considered as an individual that has a
shape with boundaries and is located in space. A physical object is a physical entity that consists of mat-
ter. Physical entities can have different dimensionality. The PhysicalWorld Ontology conceptualizes the
dimensionality of physical entities independently of how the entities are embedded or extended in space:
individuals with certain dimensionality form a class of entities with each class represented by a unary
primitive relation. Axioms of the ontology specify properties of each relation (inline with how Gotts
(1996) and Hahmann (2013) axiomatize multi-dimensional spatial regions). An n-dimensional entity
could contain entities with dimension less than n. For example a rectangular surface is a two-dimensional
entity containing four edges, which are one-dimensional, and four vertices, which are zero-dimensional.
Such a surface could be embedded into 3D space and exists as a feature of a three-dimensional entity
(e.g., the surface of a desk is a two-dimensional feature of a three-dimensional object that exists in 3D
space). The PhysicalWorld Ontology consists of three main modules, each with their own sub-modules
and is axiomatized in the language of first-order logic: the Assembly Ontology, the Occupation Ontol-
ogy, and the Kinematics Ontology.

The Assembly Ontology. The Assembly Ontology is the module of the PhysicalWorld Ontology that is
presented in this paper and discussed in detail in Sections 5 and 6.

The Occupation Ontology. The Occupation Ontology specifies the relationship between a physical en-
tity and the space it occupies. It contains two distinct categories of individuals: physical entities and
spatial regions, where the latter are considered as spatial entities in which physical entities are located.
For example, the Eiffel tower is a physical entity, which occupies a part of the three-dimensional region
denoted as Champ de Mars in Paris. The entities in both categories are of different dimensionality and the
relationships between entities in each category are axiomatized by a multi-dimensional mereotopology.
Section 6.2 presents the multi-dimensional mereotopology of physical entities. The underlying ontol-
ogy for spatial regions is the multi-dimensional mereotopology CODI (Hahmann, 2013), with which
discrete classes of regions of specific dimensions can be defined: reg_points, curves, areal_regions,
and voluminal_regions, respectively representing zero-, one-, two-, and three-dimensional spatial re-
gions. Entities in different categories (i.e., physical entities and spatial regions) are mereotopologically
independent and are related to each other only by occupation relations. The Occupy Ontology axiom-
atizes properties of such relationships. The axioms of the ontology enforce that the mereotopological
relations between physical entities are mirrored in the mereotopological relations between the corre-
sponding spatial regions. That is, if a physical entity a is part of (connected to) another physical entity
b, then the region occupied by a is part of (connected to) the region occupied by b. Relationships be-
tween lower-dimensional and upper-dimensional physical entities are also mirrored in the relationships
between lower-dimensional and upper-dimensional spatial regions (e.g., if a one-dimensional physical
entity is incident with a two-dimensional physical entity, then the curve that the former occupies is con-
tained in the areal region the latter occupies). Additionally, the axioms guarantee that physical entities
are mapped to regions with the same dimensionality (e.g., one-dimensional physical entities are mapped
to curves, and two-dimensional physical entities are mapped to areal_regions).

The Kinematics Ontology. The Kinematics Ontology is an axiomatization of fundamental concepts
required for qualitative representation of kinematics of physical systems. Accordingly, it includes six
modules, each corresponding to a fundamental concept in describing kinematics of physical bodies:
ontologies for Mass, Time, Displacement, Velocity, Acceleration, and Force. Figure 1 illustrates the
modules of the Kinematics Ontology and their relationships.
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Occupation

Force

MassAcceleration

Velocity

TimeDisplacement

Kinematics

T1

T2

T2 is a conservative 
extension of T1

Fig. 1. Modules of the Kinematics Ontology. Solid lines denote conservative extension.1

Considering the quantitative formulation of these concepts, the Force Ontology depends on the Mass
and Acceleration Ontologies; the Acceleration Ontology extends the Time and Velocity Ontologies; and
the Velocity Ontology is an extension of the Time and the Displacement Ontologies. The Displacement
Ontology itself depends on the Occupation Ontology since representing displacement requires a repre-
sentation of physical location.

3. Related Work

We categorize the existing related work in ontologies into three groups:

(1) ontologies of general concepts in assembly design and process
(2) feature ontologies that classify features of an assembly product
(3) ontologies that specify properties of a specific feature of assembly products (e.g., structure, joints,

or components).

The present work falls under the third category.

General Concepts in Assembly Design and Process. There have been a number of efforts to develop
general assembly ontologies. Dartigues et al. (2007)’s ontology, intended for interoperability among
computer-aided design systems, extends NIST’s Core Product Model (CPM) ontology (Fenves, 2001)
with three generic classes: the Common Feature Ontology, the Design Feature Ontology, and the Process
Planning Ontology. Borgo and Leitão (2007) present a first-order ontology for manufacturing scheduling
and control operations based on DOLCE (Masolo et al., 2003). More recently a Common Logic based
ontology for assembly design and process planning was developed by Imran and Young (2015, 2016).
The ontology classifies and defines generic manufacturing concepts such as assembly features, tolerance,
assembly fits, and assembly resources.

Mosca et al. (2009) propose an upper-lever OWL ontology for assembly process design based on
Function-Behavior-Structure model (Gero and Kannengiesser, 2003). The ontology includes two disjoint

1An extension T2 of a theory T1 is conservative if for all sentences Φ in the language of T1, Φ is entailed by T2 iff Φ is
entailed by T1. T2 is a non-conservative extension otherwise. A corollary of this definition is that T2 is a conservative extension
of T1 if the language of T2 extends the language of T1.



4 B. Aameri et al. / Towards an Ontology for Generative Design of Mechanical Assemblies

1 1

2 2

3 3

4 4

5 5

6 6

7 7

8 8

9 9

10 10

11 11

12 12

13 13

14 14

15 15

16 16

17 17

18 18

19 19

20 20

21 21

22 22

23 23

24 24

25 25

26 26

27 27

28 28

29 29

30 30

31 31

32 32

33 33

34 34

35 35

36 36

37 37

38 38

39 39

40 40

41 41

42 42

43 43

44 44

45 45

46 46

super classes, Function and DesignOb ject, and two binary relations, needA and partO f , where needA
and partO f define a mereology over elements of Function and DesignOb ject, respectively. Members
of DesignOb ject and Function are related by a binary relations hasA and design objects are classified
based on the role they play (i.e., their functions). More specifically, functions are represented through
a functional decomposition captured by needA and the mereology over design objects is identified with
respect to the functional decomposition.

There have been efforts towards the standardization of manufacturing product data, including assem-
bly products. The most widespread of them is STEP (STandard for the Exchange of Product data model)
(ISO10303), an international standard describing product data spanning design to manufacturing. Within
STEP, ISO10303-109 (“Kinematic and geometric constraints for assembly models”) considers assembly
models as a collection of positioned, oriented parts and describes different types of contact, as well as
kinematic degrees of freedom between parts.

OntoSTEP (Barbau et al., 2012) is the OWL translation of STEP schema while the Open Assem-
bly Model (OAM) (Fiorentini et al., 2007) is standardization effort extending NIST’s CPM ontology
by classes concerning relative position, orientation, location and connection between components of
assemblies.

Feature Ontologies. The first systematic attempts to create an ontology for design features were made
by Borst et al. (1997) and Horváth et al. (1998). Borst et al.’s Component Ontology is a module of the
PhysSys ontology (Borst et al., 1997) for specifying the relationships between components of a physical
system. It consists of a mereology and a topology over components and a system ontology that describes
the relationship between a system, its components, and the external environment.

Based on an analysis of a friction pair, Horváth et al. (1998) suggest describing design features in
terms of three fundamental concepts: (1) the set of components of the product (called entities); (2) the
arrangements of the components (called situations); and (3) the physical environment the product is
within (called phenomena). A situation has multiple aspects including involved components and their
spatial interaction, relative position of the components, shapes and the morphological conditions of
physical connections of the components, and conceivable movements of the components (e.g., the degree
of freedom and orientation of movement).

Both the Component Ontology and that due Horváth et al. (1998) provide axiomatizations for some
of their classes, however, the axiomatizations are incomplete.

Ontologies for Specific Properties of Assembly Products. Kim et al. (2006) suggest a vocabulary of
assembly terms with an English description for each term which is used to derive a class hierarchy and
a set of relationships between the classes that are specified by constraints in OWL and SWRL.

Kim et al. (2008) attempt to axiomatize assembly joining methods classified by Kim et al. (2006) using
Smith’s mereotopology (Smith, 1996). However, in their axiomatization they assume conditions about
shapes of the components that are not explicitly axiomatized by their ontology (Aameri and Gruninger,
2017). Demoly et al. (2012) and Gruhier et al. (2015) take a similar approach in axiomatizing assembly
joints, but their ontologies are also incomplete as they make implicit assumptions about shapes and
dimensionality of assembly components.

Incompleteness (with respect to intended models of the ontology) is in fact the common shortcoming
of all existing assembly ontologies.
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4. Motivating Use Case – Feasibility of Mechanical Assemblies

This section describes a motivating use case of the generative design of a suspension system. Again,
the main purpose of ontologies in the current work is to define feasible designs of a particular suspension
system to help eliminate non-feasible choices during search.

In essence, a mechanical assembly such as a suspension system can be thought as a set of components
that are interconnected to each other and behaving together as a whole to achieve a certain function. One
could consider the necessary condition of interconnectedness as the primary criterion for feasibility: at
minimum the components must be interconnected in certain ways for the system to exist in a meaningful
form and to be capable of realizing the desired function. Then, whether and how well the system real-
izes the desired function could be either a secondary consideration of feasibility or the main objective
criterion for optimization.

Figures 2-4 show typical suspension systems. In all designs, two wheels are shown and each wheel is
connected to a shock via a ball joint. Figure 2 is a beam axle design, where the two wheels are connected
laterally by a single axle and therefore their movements are coupled. Figure 3 is a swing axle design,
where each wheel is connected to an axle and the two axles are connected via a ball joint, allowing
independent movements of each wheel. Figure 4 is a double wishbone design, where each wheel is
connected to two wishbone arms and each wishbone arm is connected to the main chassis via a ball
joint, also allowing independent movements of each wheel.

4.1. Descriptions of a Feasible Suspension System

The following set of statements related to the interconnection of components describe what constitute
a feasible suspension system.

• Every component must be a proper part of the system.2

• Every component must be connected to all other components, either directly, via joints, or indi-
rectly, via other components.
• Every structural component (all components other than wheels and shocks) must have at least two

joints, in order to avoid having unnecessary “loose” components.
• Every joint must involve at least two components.
• Multiple components cannot occupy the same space except where they connect (i.e., at a joint).

Our goal is to use an ontology that can specify the above statements to check the feasibility of a given
design. A generative design problem could be posed as finding valid models of the axioms, guided by
some search procedure that can find the optimal model with respect to chosen performance criteria.

4.2. Towards Qualitative Reasoning of Kinematics

Additional aspects of feasibility, related to the desired behavior and function of the system, can be
defined based on the kinematics of the system. For example, one should expect that a working suspension
system should have magnitudes of movements within certain ranges or that the system’s degrees of
freedom along certain directions are constrained.

2a is a proper part of b if and only if a is a part of b, but b is not a part of a.
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Fig. 2. A beam axle design.

Fig. 3. A swing axle design.

Fig. 4. A double wishbone design. All joints other than the specified ones are ball joints.

As noted above, reasoning about kinematic behaviors requires representation of time, processes, and
changes in position and orientation of entities. Such ontologies are currently being developed (Aameri
and Gruninger, 2017) and their use in this context is part of future work.

Note, however, that ontologies for processes and changes in position and orientation require
mereotopologies as the building block. For instance, reasoning about the relative movement between
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two components (e.g., a piston and a cylinder) requires determining the types of parthood or connec-
tion relations between the components (e.g., a cylindrical joint connection). Hence, the current work’s
contribution is an important and fundamental step toward the eventual goal.

4.3. Assumptions about Shapes and Joints

Besides the feasibility of the system, the following assumptions are made in representing suspension
systems.

• All components are three-dimensional objects and have shapes.
• The shapes of components are idealized as geometric primitives (e.g., a shock is represented as a

cylinder).
• Joints are idealized and can be represented with geometric entities such as points, lines, and sur-

faces.
• Two types of joints are considered: fixed (or welded) and ball (or spherical) joints. Fixed joints

constrain the relative movements of paired components in all directions, both for translations
and rotations. Ball joints constrain only the translations of paired components. Topologically,
fixed joints and ball joints entail sharing of a common surface and a common point, respectively,
between the two components involved.

Note that our focus is on representing the mereotopology of suspension systems, not relative move-
ments, so different types of kinematic joints are not exhaustively defined. Other types of joints can be
represented if the abstractions of fixed and ball joints are extended by a theory of relative orientation.

5. Ontological Choices for the Assembly Ontology

The key objective of the Assembly Ontology is to specify qualitative properties of mechanical assem-
blies such as the suspension system. In this section, we extract and delineate the semantic requirements
for the Assembly Ontology based on properties identified in the literature for representing such a product.
To increase reuseability, we axiomatize the weakest theories that capture all the identified requirements.
Section 7 demonstrates that these theories are sufficient for axiomatizing properties of suspension sys-
tems we described in Section 4. In Section 6, we discuss possible extensions of modules of the Assembly
Ontology to stronger theories.

An assembly is a set of components that are attached together by some sorts of mechanical joints (Pop-
plestone et al., 1990; Gruhier et al., 2015). We base our ontological choices for mechanical assemblies
on the following representation and reasoning requirements and challenges that have been identified in
the literature.

• Part-whole relationships between an assembly and its components (Kim et al., 2008; Gruhier et al.,
2015; Sanfilippo et al., 2016).
• Shapes and locations of, and spatial relations between, components (Popplestone et al., 1990).
• Shapes and morphological conditions of joints (Horváth et al., 1998).
• Relative position, orientation, and conceivable movement of components (e.g., degrees of freedom

or the orientation of movement) (Horváth et al., 1998).
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• Holes in surfaces (Sanfilippo et al., 2016). According to (Sanfilippo et al., 2016), there are two
common treatments of holes: as entities on their own or as a quality of the objects that carry them.
The former treatment requires a non-standard mereology to deal with the summation of material
and immaterial entities, while the later needs a representation for shapes.

• Mating features (Papalambros and Wilde, 2000; Kim et al., 2006). When two components are
joined, they do not make contact over their entire surface areas; rather, some geometric entities
(i.e., faces, lines, or points) of the components are in contact. Notice that mating features have
to be boundaries of components. A possible choice for representing assembly joints is to use a
three-dimensional representation of components that axiomatizes geometric entities and connec-
tion relations between them, together with a theory of boundaries.

In the present work we focus on axiomatizing part-whole and connection relationships; shape, relative
position, and dimensionality of components; and boundaries of components. Representation of the other
features is part of future work.

Part-Whole and Connection Relationships. The most common way of formalizing connection and part-
whole relations is to use mereotopologies (Kim et al., 2008; Gruhier et al., 2015; Sanfilippo et al., 2016).
Given that different types of joints are abstracted as connections between mating features with different
dimensionality (e.g., fixed and ball joints are respectively abstracted as connections between points and
surfaces), and that the other modules of the ontology are required to be multi-dimensional, the Assembly
Ontology needs to include a multi-dimensional mereotopology.

When developing a mereotopological theory for physical domains, we need to consider that physical
systems, and specifically assemblies, are typically modeled as finite domains; that is, it is assumed that
the system has finite components and each component is atomic. For example, in representing a sus-
pension system we assume that springs and wheels are atomic because the parts of such a component
contribute in unity a cohesive physical behavior to the assembly. On the other hand, there might be appli-
cations which require an atomless representation of some classes of physical objects (e.g., functionally
graded materials that require the composition and structure of objects to vary in arbitrary small units.).
Therefore, the mereotopology we choose does not make any commitment about the atomicity of objects.
The atomicity assumption can be taken with respect to domain-specific requirements.

A similar argument can be made for extensionality: There are valid physical configurations that are
not extensional (Aameri and Gruninger, 2017). Consider for example a suspension system with three
atomic components, two wheels and a beam such that the wheels are connected to the beam. The two
wheels are connected to the same set of elements (i.e., the beam), but they are not identical. In fact,
any model with finite number of elements may not be extensional. The extensionality axiom, therefore,
should not be included in the ontology, but nor should its negation as a physical system may or may not
be extensional.

The existing multi-dimensional mereotopologies, such as Galton’s Mereotopology (Galton, 2004),
CODI (Hahmann, 2013) and INCH (Gotts, 1996), are developed for the representation of spatial regions,
and are too strong for representing spatial configuration between physical objects since they are either
atomless or extensional (or both).

We therefore need to extend an existing equi-dimensional mereotopology to a multi-dimensional one.
We choose the General Mereotopology (MT), the weakest theory among the mereotopologies presented
by Casati and Varzi (1999). It has been shown by Gruninger and Aameri (2017) that MT has the same
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mereotopological properties as the RCC8 composition table (Randell et al., 1992). RCC8 has been suc-
cessfully used in various physical domains for specifying spatial configurations of objects. It is also
sufficient for stating all the mereotopological constraints for our use case.

Shape, Relative Position, and Dimensionality. For capturing three-dimensionality of assembly compo-
nents and their shapes, we adopt and extend an ontology presented by Gruninger and Bouafoud (2011)
for qualitative representation of three-dimensional shapes. The ontology is based on a subtheory of
Hilbert’s axiomatic theory of geometry (Hilbert, 1902) that deals with incidence and betweenness rela-
tions. The incident relation captures the relationship between entities with different dimensions, while
the betweenness relation can be used to axiomatize relative position of components. In addition, the
ontology is capable of axiomatizing holes in surfaces.

Shape Boundaries. There are two ontological viewpoints for the representation of boundaries. One
considers a boundary as a region which has empty interior; that is, boundaries are not considered as
lower-dimensional entities (Smith, 1996). The alternative approach, adopted by General Formal Ontol-
ogy (GFO) (Baumann et al., 2016) and CODIB (Hahmann, 2013), considers a boundary as a lower-
dimensional entity which is part of the bounded entity. The adoption of a multi-dimensional representa-
tion in order to represent joints appropriately, among other reasons (see above), requires also adopting
this second view.

5.1. Ontological Commitments

The key ontological commitments we consider in axiomatizing the Assembly Ontology are the fol-
lowing. (Req 1) and (Req 4) to (Req 6) are adopted from Hilbert (1902) and Gruninger and Bouafoud
(2011).

(Req 1) There are four dimensions.
For each dimension, there is a primitive predicate in the language of the ontology representing
zero-, one-, two-, and three-dimensional entities.

(Req 2) A non-empty set of three-dimensional entities is a physical entity.
There is a primitive predicate in the language of the ontology representing (non-empty) sets of
three-dimensional entities.

(Req 3) Each physical entity is of exactly one of the four dimensions, or is a non-empty set of three-
dimensional objects.

(Req 4) Individuals with different dimensions are only related by incidence relations.
Each class of entities is mereotopologically independent of the other classes and there is no be-
tweenness relationships between entities with different dimensions.

(Req 5) Zero- and one-dimensional entities do not exist independently of two-dimensional entities;
two-dimensional entities do not exist independently of three-dimensional entities.

(Req 6) Relative positions of equi-dimensional individuals are captured by betweenness relations.
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Assembly

MT Multidimensional Object Mereotopology

Shape

Boundary T1

T2

T2 is a conservative 
extension of T1

T1

T2
T2 is a non conservative 
extension of T1

Fig. 5. Modules of the Assembly Ontology. Solid lines denote conservative extension and dashed lines denote nonconserative
extension.

(Req 7) Spatial relationships between equi-dimensional individuals are captured by mereological
and/or topological relations.

(Req 8) A boundary always bounds an entity with a higher dimension.
However, unlike Baumann et al. (2016), the dimension of an entity does not have to be exactly
one dimension higher than its boundary. For example, a surface can have a boundary point and no
boundary lines.

(Req 9) Every three-dimensional entity has at least one non-shared boundary, where the boundary
is two-dimensional.

6. The Assembly Ontology

In this section we present the axioms of the Assembly Ontology. Considering the requirements dis-
cussed in Section 5, the ontology is designed to consist of three primary modules (Figure 5):

• The Shape Ontology based on the CardWorld and BoxWorld Ontologies (Gruninger and
Bouafoud, 2011) which itself is based on Hilbert’s axiomatic theory of geometry (Hilbert, 1902).
The ontology specifies properties and relationships among five disjoint categories of entities that
represent zero-, one-, two-, three-, and four-dimensional entities (four-dimensional entities are
non-empty sets of three-dimensional objects).
• The MT Multidimensional Object Mereotopology (MT MOM) which captures mereological and

topological relationships between individuals with zero-, one-, two-, and three-dimensions.
• The Boundary Ontology which extends the Shape Ontology with axioms that describe properties

of physical boundaries.

6.1. The Shape Ontology

The CardWorld and BoxWorld ontologies axiomatize properties of a stand-alone two-dimensional
and three-dimensional entity, respectively. We extend these modules by another module called the Poly-
World, which specifies relationships between non-empty sets of three-dimensional objects. In axiomatiz-
ing PolyWorld, we relax and modify some of the assumptions originally made in developing CardWorld
and BoxWorld.
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Fig. 6. Modules of the Shape Ontology. Solid lines denote conservative extension and dashed lines denote nonconservative
extension.

Hilbert’s theory consists of three subtheories: the first one axiomatizes properties of the incidence
relation; the second one is a theory of betweenness; and the third one describes congruence relationships.
The focus of the CardWorld and BoxWorld is on the incidence and betweenness relations, ignoring
geometrical notions such as the length and relative alignment of lines or the curvature and areas of
surfaces. The important advantage of the CardWorld and BoxWorld is that combining it with a multi-
dimensional mereotopology is straightforward since it includes primitives for zero-, one-, two-, and
three-dimensional entities.

Within the domain of a model of the Shape Ontology there are five disjoint categories, namely point,
edge, surface, box, and poly, where a poly is a non-empty set of boxes, a box is a non-empty set of sur-
faces, a surface is a set of edges, and an edge is a set of points. Zero-, one-, two-, and three-dimensional
entities respectively correspond with points, edges, surfaces, and boxes. The signature of the Shape On-
tology includes a binary predicate, in, that captures the incidence relations between different categories
of entities.

The axioms of the Shape Ontology are decomposed into nine modules, where three of them specify
properties of two-dimensional shapes (cardworld_inc, weak_card_outer, and weak_card_edge), three
specify properties of three-dimensional shapes (boxworld_inc, weak_box_edge, and boxworld_border),
and three state properties of non-empty sets of three-dimensional shapes (poly_inc, poly_sur f ace, and
poly_order). The meta-logical relationships between these modules are shown in Figure 6. We first
present the axioms of the modules corresponding with two-dimensional shapes and then discuss axioms
representing three-dimensional shapes and their collections.

6.1.1. Axiomatizing Two-Dimensional Shapes
Tcardworld_inc is the root theory of the CardWorld and guarantees disjointness between points, edges,

and surfaces. The axioms of Tcardworld_inc also guarantee that in is an incidence relation; that is, it is
reflexive, symmetric, and does not relate two distinct elements that are of the same sort.

Definition 1. Tcardworld_inc is the theory axiomatized by the following sentences:

(∀x) point(x) ⊃ ¬edge(x) ∧ ¬sur f ace(x). (1)

(∀x) edge(x) ⊃ ¬sur f ace(x). (2)

(∀x, y) in(x, y) ⊃ in(y, x). (3)
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(∀x) in(x, x). (4)

(∀x, y) in(x, y) ∧ point(x) ∧ point(y) ⊃ (x = y). (5)

(∀x, y) in(x, y) ∧ edge(x) ∧ edge(y) ⊃ (x = y). (6)

(∀x, y) in(x, y) ∧ sur f ace(x) ∧ sur f ace(y) ⊃ (x = y). (7)

Tweak_card_edge specifies properties of edges in a two-dimensional shape by stating that each point or
edge is part of some surface (Axiom (8)) and an edge contains at most two vertices (Axiom (9)), where
a vertex is a point where two edges meet (Axiom (11)).

Definition 2. Tweak_card_edge is the extension of Tcardworld_inc with the following sentences:

(∀x) (point(x) ∨ edge(x)) ⊃ (∃s) sur f ace(s) ∧ in(x, s). (8)

(∀e, v1, v2, v3) edge(e) ∧ vertex(v1) ∧ vertex(v2) ∧ vertex(v3) ∧ in(v1, e) ∧ in(v2, e) ∧ in(v3, e)

⊃ (v1 = v2) ∨ (v1 = v3) ∨ (v2 = v3). (9)

(∀v, e1, e2) meet(e1, e2, v) ≡

(edge(e1) ∧ edge(e2) ∧ point(v) ∧ ¬(e1 = e2) ∧ in(v, e1) ∧ in(v, e2)). (10)

(∀v) vertex(v) ≡ (∃e1, e2) meet(e1, e2, v). (11)

Tweak_card_edge is a subtheory of the module card_edge of the CardWorld. The followings are axioms
of card_edge that are not in Tweak_card_edge, and the reason they are not included:

(1) Each point is part of some edge.
This axiom prevents the possibility of a point incident with a surface, without being part of an
edge. Such a possibility is required for example for defining joints with only a single common
point. Having points independent of edges may also be used to represent the location of center-of-
mass on a three-dimensional object in future work.

(2) Each surface contains an edge.
A sphere has one surface and no edges.

(3) Every edge contains at least two vertices.
This axiom eliminates circular shapes as they only have one edge and no vertex. The base of a
cylinder is for example circular, and in Section 7 we see that shocks are abstracted as cylinders.

Tweak_card_outer is a subtheory of the module card_outer of the CardWorld (Gruninger and Bouafoud,
2011) and is intended to represent holes in a surface. The edges in a surface can be abstracted as disjoint
cyclic orderings (Axioms (12) and (13)). Intuitively, one of these orderings form the outer edges of
the surface, while the others represent holes within the surface. The relationship between the cyclic
orderings of a surface and the surface and its vertices are axiomatized by Axioms (14) and (15). Axiom
(17) enforces that if a surface contains outer edges, then outer edges form a cyclic ordering.

Definition 3. Tweak_card_outer is the extension of Tweak_card_edge with the following sentences:

(∀e1, e2, e3) (sbetween(e1, e2, e3) ⊃ sbetween(e2, e3, e1). (12)
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Fig. 7. Example of a surface with hole. Edges
e1, e2, ..., e8 are incident with surface s. e1, e2, e3 and e4
are outer edges while e5, e6, e7, e8 are edges around the
hole
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Fig. 8. Example of a box with border edges e1, e2, e3, e4.

(∀e1, e2, e3, e4) sbetween(e1, e2, e3) ∧ sbetween(e1, e3, e4) ⊃ sbetween(e1, e2, e4). (13)

(∀e1, e2, e3) sbetween(e1, e2, e3) ∧ ¬(e1 = e2) ⊃

(∃e4) (sbetween(e1, e4, e2) ∧ ¬(e4 = e1) ∧ ¬(e4 = e2)) ∨ (∃v) meet(e1, e2, v). (14)

(∀e1, e2, e3) sbetween(e1, e2, e3) ⊃

(∃s) sur f ace(s) ∧ edge(e1) ∧ edge(e2) ∧ edge(e3) ∧ in(e1, s) ∧ in(e2, s) ∧ in(e3, s). (15)

(∀e) outer(e) ⊃ edge(e). (16)

(∀e1, e2, s) (outer(e1) ∧ sur f ace(s) ∧ edge(e2) ∧ in(e1, s) ∧ in(e2, s)) ⊃

(outer(e2) ≡ (∃e3)outer(e3) ∧ in(e3, s) ∧ (sbetween(e1, e2, e3) ∨ sbetween(e1, e3, e2))). (17)

Figure 7 illustrates a model of Tweak_card_outer: s1 is a surface with hole that is incident with four outer
edges e1, e2, e3, e4, and four edges e5, e6, e7, e8 that are not outer and belong to the hole in s1.

6.1.2. Axiomatizing Three-Dimensional Shapes
Tboxworld_inc is the root theory of the BoxWorld, specifying the disjointness of boxes from the lower-

dimensional entities in Tcardworld_inc.

Definition 4. Tboxworld_inc is the theory obtained by extending Tcardworld_inc with the following sentences:

(∀x) point(x) ∨ edge(x) ∨ sur f ace(x) ⊃ ¬box(x). (18)

(∀x, y) in(x, y) ∧ box(x) ∧ box(y) ⊃ (x = y). (19)

Tweak_box_edge axiomatizes properties of edges of a box. Axioms (20) and (21) respectively define a
ridge as an edge that is part of two surfaces and a border as an edge that is part of a unique surface.
Axiom (22) states that a surface that is part of a box containing other surfaces also contains a ridge. If
three distinct edges meet at the same vertex, then they cannot all be part of the same surface (Axiom
(23)).

Definition 5. Tweak_box_edge is the extension of Tweak_card_edge ∪ Tboxworld_inc with the following sentences:

(∀e) ridge(e) ≡



14 B. Aameri et al. / Towards an Ontology for Generative Design of Mechanical Assemblies

1 1

2 2

3 3

4 4

5 5

6 6

7 7

8 8

9 9

10 10

11 11

12 12

13 13

14 14

15 15

16 16

17 17

18 18

19 19

20 20

21 21

22 22

23 23

24 24

25 25

26 26

27 27

28 28

29 29

30 30

31 31

32 32

33 33

34 34

35 35

36 36

37 37

38 38

39 39

40 40

41 41

42 42

43 43

44 44

45 45

46 46

(∃s1, s2)edge(e) ∧ sur f ace(s1) ∧ sur f ace(s2) ∧ ¬(s1 = s2) ∧ in(e, s1) ∧ in(e, s2). (20)

(∀e) border(e) ≡ edge(e) ∧ ¬ridge(e). (21)

(∀x, s1, s2)box(x) ∧ sur f ace(s1) ∧ sur f ace(s2) ∧ ¬(s1 = s2) ∧ in(s1, x) ∧ in(s2, x) ⊃

(∃e)ridge(e) ∧ in(e, s1). (22)

(∀e1, e2, e3, v, s) edge(e1) ∧ edge(e2) ∧ edge(e3) ∧ sur f ace(s)

∧¬(e1 = e2) ∧ ¬(e1 = e3) ∧ ¬(e2 = e3)

∧vertex(v) ∧ in(e1, s) ∧ in(e2, s) ∧ in(v, e2) ∧ meet(e1, e2, v) ∧ meet(e1, e3, v) ⊃ ¬in(e3, s). (23)

Tweak_box_edge is a subtheory of the module box_edge of the BoxWorld. The followings are the axioms
of box_edge that are not in Tweak_box_edge, together with counter-examples that show why these axioms
are not included.

(1) An edge is part of at most two surfaces.
Consider multiple sheets that share a single edge (like pages of a notebook, or turbine blades,
idealized as sheets, that are connect to a shaft, idealized as a single edge). Then the common edge
is part of more than two surfaces.

(2) Every edge in a surface meets another distinct edge in that surface.
An edge representing a circular hole on a surface does not meet any other edges.

(3) Every border edge meets two distinct border edges and every border meets another unique
border at a vertex.
The border edge of a circular bowl, for example, does not meet any other border edges since a
circular shape only has one edge.

Tweak_box_border is a subtheory of the module boxworld_border of the BoxWorld (Gruninger and
Bouafoud, 2011) and axiomatizes properties of border edges (i.e., edges that are part of exactly one
surface) in a box. Axioms (24) and (25) state that bbetween is a cyclic ordering relation. Axioms (26)
and (27) state that bbetween is only defined over border edges of a box, and that if a box contains border
edges, then they form a cyclic ordering.

Definition 6. Tweak_box_border is the extension of Tweak_box_edge with the following sentences:

(∀e1, e2, e3) (bbetween(e1, e2, e3) ⊃ bbetween(e2, e3, e1). (24)

(∀e1, e2, e3, e4) bbetween(e1, e2, e3) ∧ bbetween(e1, e3, e4) ⊃ bbetween(e1, e2, e4). (25)

(∀e1, e2, e3) bbetween(e1, e2, e3) ⊃

(∃x) box(x) ∧ border(e1) ∧ border(e2) ∧ border(e3) ∧ in(e1, x) ∧ in(e2, x) ∧ in(e3, x). (26)

(∀x, e1, e2, e3) box(x) ∧ border(e1) ∧ border(e2) ∧ border(e3) ∧ in(e1, x) ∧ in(e2, x) ∧ in(e3, x)

⊃ bbetween(e1, e2, e3) ∨ bbetween(e2, e3, e1) ∨ bbetween(e3, e1, e2). (27)

Figure 8 illustrates a model of Tweak_box_border, which intuitively is a bin in which the surface s1 is the
bottom and surfaces s2, s3, s4, s5 are sides. e1, e2, e3, e4 are only incident with one surface (respectively
with s2, s3, s4, s5) and so are border edges, while other edges are shared between two surfaces and so are
are ridges. Note that e1, e2, e3, e4 form a cyclic ordering.
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6.1.3. Axiomatizing Relations between Three-Dimensional Shapes
Tpoly_inc introduces a sort primitive, poly, and guarantees that polies are disjoint from other dimen-

sional sorts in the ontology.

Definition 7. Tpoly_inc is the theory obtained by extending Tcardworld_inc ∪ Tboxworld_inc with with the fol-
lowing sentences:

(∀x) point(x) ∨ edge(x) ∨ sur f ace(x) ∨ box(x) ⊃ ¬poly(x). (28)

(∀x, y) in(x, y) ∧ poly(x) ∧ poly(y) ⊃ (x = y). (29)

Tpoly_sur f ace axiomatizes the relationship between a box and its surfaces. Axioms (30) and (31) state
that a surface does not exist independently of a box and is incident with at most two boxes. Axiom (32)
guarantees that a box has at least one non-shared surface. Axiom (33) states that points and edges of a
box are incident with at least one of its surfaces.

Definition 8. Tpoly_sur f ace is the extension of Tpoly_inc ∪ Tweak_box_edge with the following sentences:

(∀s) sur f ace(s) ⊃ (∃b) box(b) ∧ in(s, b). (30)

(∀s, x1, x2, x3)sur f ace(s) ∧ box(x1) ∧ box(x2) ∧ box(x3)∧

in(s, x1) ∧ in(s, x2) ∧ in(s, x3) ⊃ (x1 = x2) ∨ (x2 = x3) ∨ (x1 = x3). (31)

(∀b) box(b) ⊃ (∃s) sur f ace(s) ∧ in(s, b) ∧ (∀b1)box(b1) ∧ ¬(b = b1) ⊃ ¬in(s, b1). (32)

(∀b, x) box(b) ∧ in(x, b) ∧ (point(x) ∨ edge(x)) ⊃ (∃s)sur f ace(s) ∧ in(s, b) ∧ in(x, s). (33)

To represent the relative position of three-dimensional objects (e.g., the relative position of the beam
in a suspension system with respect to the wheels), we define a betweenness relation over the set of
boxes in a poly. Tpoly_order axiomatizes the properties of this relation.

Definition 9. Tpoly_order is the extension of Tboxworld_inc with the following sentences:

(∀b1, b2, b3) xbetween(b1, b2, b3) ⊃ box(b1) ∧ box(b2) ∧ box(b3). (34)

(∀b1, b2) xbetween(b1, b2, b1) ⊃ (b1 = b2). (35)

(∀b1, b2, b3, b4) xbetween(b1, b2, b3) ∧ ¬(b2 = b3) ∧ xbetween(b2, b3, b4)

⊃ xbetween(b1, b2, b4). (36)

(∀b1, b2, b3, b4) xbetween(b1, b2, b4) ∧ xbetween(b2, b3, b4) ⊃ xbetween(b1, b2, b3). (37)

(∀b1, b2, b3) xbetween(b1, b2, b3) ⊃ xbetween(b3, b2, b1). (38)

The relative positions of the beam and wheels in Figure 2, for example, can be specified by repre-
senting the beam and the wheels as boxes and stating that the beam is between the wheels using the
xbetween relation and the theory Tpoly_order.
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Fig. 9. Example of a poly consisting of two boxes Box1
and Box2 and a shared edge e1 which is incident with
both Box1 and Box2.
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Fig. 10. Example of a surface with a (triangular) hole
where the hole and the boundary of the surface have tan-
gential connection.

6.1.4. Axioms of the Shape Ontology
Tweak_card_edge and Tpoly_sur f ace enforce that every point is part of some edge or surface, every edge is

part of a surface, and every surface is part of some box. The axioms in Tshape strengthen this condition
so that every poly contains at least one box (Axiom (39)), every box is part of a poly (Axiom (40)) and
that each point, edge, or surface or box is contained in a unique poly (Axiom (41)). Moreover, elements
that are incident with elements in a poly are incident with the poly itself (Axiom (42)).

Definition 10. Tshape is the extension of Tweak_card_outer ∪ Tboxworld_border ∪ Tpoly_sur f ace ∪ Tpoly_order with
the following sentences:

(∀p) poly(p) ⊃ (∃b) box(b) ∧ in(b, p). (39)

(∀b) box(b) ⊃ (∃p) poly(p) ∧ in(b, p). (40)

(∀x1, x2, y) in(y, x1) ∧ in(y, x2) ∧ poly(x1) ∧ poly(x2)∧

(point(y) ∨ edge(y) ∨ sur f ace(y) ∨ box(y))) ⊃ (x1 = x2))). (41)

(∀p, x, y) poly(p) ∧ in(x, p) ∧ in(y, x) ⊃ in(y, p). (42)

Figure 9 is an example of a poly that is a model of Tshape. The poly consists of two boxes, each with
eight surfaces, that share an edge e1.

6.2. The MT Multidimensional Object Mereotopology

The MT Multidimensional Object Mereotopology (MT MOM) extends the language of the Shape
Ontology with two parthood predicates: sur f ace_part, and box_part corresponding with surfaces and
boxes; and four connection predicates: point_C, edge_C, sur f ace_C, and box_C, respectively corre-
sponding with points, edges, surfaces, and boxes. Mereotopological relationships between surfaces and
boxes are axiomatized by the Ground Mereotopology (MT) (Casati and Varzi, 1999), while topological
relations between points and edges are specified using the topological subtheory of MT. Individuals in
different categories, however, are not related by topological or mereological relations.

Axioms (43) to (45) define point_C as a reflexive and symmetric relation over point, capturing con-
nection relations between points.
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Definition 11. Tpoint_mt is the theory axiomatized by the following sentences:

(∀x, y) point_C(x, y) ⊃ point(x) ∧ point(y). (43)

(∀x) point(x) ⊃ point_C(x, x). (44)

(∀x, y) point_C(x, y) ⊃ point_C(y, x). (45)

In addition to representing joining methods (e.g., spot welding), a point connection relation can be
used to overcome some of the representational limitations of the Shape Ontology. Consider for example
a rectangle surface s1, similar to the one depicted in Figure 10, containing edges e1, e2, e3, e4 and a
triangular hole with edges e5, e6, e7 such that the triangle and the rectangle are tangent. One way of
representing this combination is to assume that two edges of the triangle meet with the two edges of the
rectangle. However, such an assumption is inconsistent with Tshape as Axiom (23) states that when more
than two distinct edges meet at the same vertex, they cannot all be part of the same surface. In fact if a
hole edge meets an outer edge, the hole edge could satisfy the conditions of being an outer edge (i.e.,
Axioms (14) and (17)). Axiom (23) guarantees that outer and holes edges do not meet and, without this
axiom, Tweak_card_outer fails to distinguish between outer and hole edges. To represent s1 we can assume
that the edges of the rectangle and the edges of the triangle meet at distinct vertices, and the two vertices
are related by the relation point_C. That is, e1 and e4 meet at vertex v1, e5 and e7 meet at vertex v2, and
v1 and v2 are connected (see Figure 10).

Axioms (46) to (48) define edge_C as a reflexive and symmetric relation over edge, capturing connec-
tion relations between edges.

Definition 12. Tedge_mt is the theory axiomatized by the following sentences:

(∀x, y) edge_C(x, y) ⊃ edge(x) ∧ edge(y). (46)

(∀x) edge(x) ⊃ edge_C(x, x). (47)

(∀x, y) edge_C(x, y) ⊃ edge_C(y, x). (48)

Axioms (49) to (56) axiomatize the mereotopology of surfaces.

Definition 13. Tsur f ace_mt is the theory axiomatized by the following sentences:

(∀x, y) sur f ace_part(x, y) ⊃ sur f ace(x) ∧ sur f ace(y). (49)

(∀x) sur f ace(x) ⊃ sur f ace_part(x, x). (50)

(∀x, y) sur f ace_part(x, y) ∧ sur f ace_part(y, x) ⊃ (x = y). (51)

(∀x, y, z) sur f ace_part(x, y) ∧ sur f ace_part(y, z) ⊃ sur f ace_part(x, z). (52)

(∀x) sur f ace(x) ⊃ sur f ace_C(x, x). (53)

(∀x, y) sur f ace_C(x, y) ⊃ sur f ace_C(y, x). (54)

(∀x, y) sur f ace_C(x, y) ⊃ sur f ace(x) ∧ sur f ace(y). (55)

sur f ace_part(y, z) ∧ sur f ace_C(x, y) ⊃ sur f ace_C(x, z). (56)
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sur f ace_part is defined over surfaces (Axiom (49)), and is a reflexive, antisymmetric, and transitive
relation (Axioms (50) to (52)), while sur f ace_C is a reflexive and symmetric relation over surfaces
(Axioms (53) to (55)). Moreover, when a surface x is connected to another y, then x must be connected
to all surfaces which y is part of (Axiom (56)).

Axioms (57) to (64) axiomatize the mereotopology of boxes. box_part and box_C have the same
properties as sur f ace_part and sur f ace_C except that they are defined over boxes.

Definition 14. Tbox_mt is the theory axiomatized by the following sentences:

(∀x, y) box_part(x, y) ⊃ box(x) ∧ box(y). (57)

(∀x) box(x) ⊃ box_part(x, x). (58)

(∀x, y) box_part(x, y) ∧ box_part(y, x) ⊃ (x = y). (59)

(∀x, y, z) box_part(x, y) ∧ box_part(y, z) ⊃ box_part(x, z). (60)

(∀x, y) box_C(x, y) ⊃ box(x) ∧ box(y). (61)

(∀x) box(x) ⊃ box_C(x, x). (62)

(∀x, y) box_C(x, y) ⊃ box_C(y, x). (63)

box_part(y, z) ∧ box_C(x, y) ⊃ box_C(x, z). (64)

Tmt_mom specifies the relationship between an entity and the lower-dimensional entities of its parts and
connected components.

Definition 15. Tmt_mom is the extension of Tshape ∪ Tpoint_mt ∪ Tedge_mt ∪ Tsur f ace_mt ∪ Tbox_mt with the
following sentences:

(∀x, s1, s2) sur f ace_part(s1, s2) ∧ in(s2, x) ∧ (box(x) ∨ poly(x)) ⊃ in(s1, x). (65)

(∀x, b1, b2) box_part(b1, b2) ∧ in(b2, x) ∧ poly(x) ⊃ in(b1, x). (66)

(∀e1, e2) edge(e1) ∧ edge(e2) ∧ (∃x)in(x, e1) ∧ in(x, e2) ∧ point(x) ⊃ edge_C(e1, e2). (67)

(∀s1, s2) sur f ace(s1) ∧ sur f ace(s2) ∧ (∃x)in(x, s1) ∧ in(x, s2) ∧ (edge(x) ∨ point(x))

⊃ sur f ace_C(s1, s2). (68)

(∀b1, b2) box(b1) ∧ box(b2) ∧ (∃x)in(x, b1) ∧ in(x, b2) ∧ (sur f ace(x) ∨ edge(x) ∨ point(x))

⊃ box_C(b1, b2). (69)

(∀b1, b2) box_C(b1, b2) ∧ ¬box_part(b1, b2) ∧ ¬box_part(b2, b1)

⊃ (∃x1, x2)(point(x1) ∧ point(x2) ∧ in(x1, b1) ∧ in(x2, b2) ∧ point_C(x1, x2))

∨(edge(x1) ∧ edge(x2) ∧ in(x1, b1) ∧ in(x2, b2) ∧ edge_C(x1, x2))

∨(sur f ace(x1) ∧ sur f ace(x2) ∧ in(x1, b1) ∧ in(x2, b2) ∧ sur f ace_C(x1, x2)). (70)

(∀b1, b2, b3) xbetween(b1, b2, b3) ⊃ ¬box_part(b1, b2) ∧ ¬box_part(b1, b3) ∧ ¬box_part(b2, b3)

∧¬box_part(b2, b1) ∧ ¬box_part(b3, b1) ∧ ¬box_part(b3, b2). (71)
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Axioms (65) and (66) indicate that parts of a surface or a box are also incident with the upper-
dimensional entities that the surface or the box are incident with. Axioms (67) to (69) state that if two
elements share a common lower-dimensional entity, then they are connected (for example, Box1 and
Box2 in Figure 9 are connected since they share the edge e1). Axiom (70) states that if two boxes are
connected, but are not part of each other, then each contain a lower-dimensional entity such that those
entities are connected. Finally, Axioms (71) states that xbetween relation is defined over boxes that are
not parts of each other.

As an example of application of Tmt_mom consider a cube B and a larger cube C which has B as a
part. Assume that a surface s1 is incident with both B and C and another cube A is externally connected
to B and C through s1. Considering the axioms of the Shape Ontology, s1 cannot be incident with A
(otherwise Axiom (31) is contradicted). To represent this configuration we can state that there is a surface
s2, s2 6= s1, which is incident with A and sur f ace_C(s1, s2) holds. Notice that this configuration cannot
be described solely by the Shape Ontology and requires the predicate sur f ace_C which is axiomatized
by Tmt_mom.

6.3. The Boundary Ontology

The Boundary Ontology is a conservative extension of the Shape Ontology that extends its language
with binary predicates: point_bound(x, y), edge_bound(x, y), and sur f ace_bound(x, y) respectively de-
noting that x is a point boundary, an edge boundary, or a surface boundary of y.

Definition 16. Tboundary is the extension of Tshape with the following sentences:

(∀x, y) sur f ace_bound(x, y) ⊃ in(x, y) ∧ sur f ace(x) ∧ box(y). (72)

(∀x, y) edge_bound(x, y) ⊃ in(x, y) ∧ edge(x) ∧ (sur f ace(y) ∨ box(y)). (73)

(∀x, y) point_bound(x, y) ⊃ in(x, y) ∧ point(x) ∧ (edge(y) ∨ sur f ace(y) ∨ box(y)). (74)

(∀x, y, z) sur f ace_bound(x, y) ∧ in(z, x) ∧ (edge(z) ∨ point(z)) ⊃

(edge_bound(z, y) ∨ point_bound(z, y)). (75)

(∀x, y, z) edge_bound(x, y) ∧ in(z, x) ∧ point(z) ⊃ point_bound(z, y). (76)

(∀b) box(b) ⊃ (∃s)sur f ace_bound(s, b). (77)

(∀x, b1, b2) sur f ace(x) ∧ box(b1) ∧ box(b2) ∧ ¬(b1 = b2) ∧ in(x, b1) ∧ in(x, b2) ⊃

¬sur f ace_bound(x, b1) ∧ ¬sur f ace_bound(x, b2). (78)

Axioms (72) to (74) state that a boundary always bounds an entity with a higher dimension (Req 8).
Axioms (75) and (76) state that lower-dimensional entities of a boundary entity are also boundaries.
Axiom (77) captures (Req 9). Finally, Axiom (78) states that a surface which is shared between two
boxes cannot be a boundary surface. For example, the surface S 1 in Figure 11 is not a boundary surface
because it is incident with two boxes B1 and B2. All other surfaces of B1 and B2, as well as their lower-
dimensional parts (i.e., their edges and vertices) are boundary entities of B1 and B2.
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B1 B2

S1

Fig. 11. Example of a poly consisting of two boxes B1 and B2 that share a surface S 1. Since S 1 in incident with two boxes it
is not a boundary surface.

6.4. Axioms of the Assembly Ontology

The Assembly Ontology extends MT MOM and the Boundary Ontology with statements about
mereotopological relations between boundary entities. Axiom (79) enforces that only boundary enti-
ties of a box can be connected to entities of another box, while Axiom (80) states that surface parts of a
boundary surface which only belong to one box are also boundaries.

Definition 17. Tassembly is the extension of Tmt_mom ∪ Tboundary with the following sentences:

(∀b1, b2, x1, x2)(point_C(x1, x2) ∨ edge_C(x1, x2) ∨ sur f ace_C(x1, x2)) ∧ in(x1, b1) ∧ in(x2, b2)

∧box(b1) ∧ box(b2) ∧ ¬(x1 = x2) ∧ ¬(b1 = b2) ⊃

(point_bound(x1, b1) ∧ point_bound(x2, b2)) ∨ (edge_bound(x1, b1) ∧ edge_bound(x2, b2))

∨(sur f ace_bound(x1, b1) ∧ sur f ace_bound(x2, b2)). (79)

(∀s1, s2) sur f ace_part(s1, s2) ∧ sur f ace_bound(s2, b)∧

(∀b1)(box(b1) ∧ ¬(b = b1) ⊃ ¬in(s1, b1)) ⊃ sur f ace_bound(s1, b). (80)

6.5. Discussion

The axiomatization we presented for the Assembly Ontology provides the weakest theory that is re-
quired for representing mechanical assemblies. Depending on domain-specific requirements, stronger
theories may be needed. The modular design of the Assembly Ontology, as well as the separate, dis-
joint relations for each entity sort, enable extension of a module of the ontology with minimal effects
on other modules. For example, in some application domains it is required that every pair of assembled
components/subassemblies be represented as a distinct entity. In that case, the mereotopology of the
three-dimensional entities must include an axiom stating that a mereotopological sum exists for every
pair of three-dimensional entities. Considering that in the Assembly Ontology the mereotopology of
boxes is independent of other entities, the only theory that has to be extended is Tbox_mt.

Another important feature of the Assembly Ontology is the inclusion of elements of the class poly
as non-empty sets of three-dimensional objects. Specifying an assembly product (such as a suspension
system) as a poly, instead of a box, provides two important representational advantages: first, it enables
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distinguishing between subsystems and subassemblies of a physical product; second, it provides a way
for describing objects that have the same mereotopological structure, but a different relative configura-
tion of their components.

The Assembly Ontology alone is not sufficient for representing notions such as motion, deformation
of shapes and relative movements of components of an assembly; to capture these concepts the As-
sembly Ontology needs to be extended by theories axiomatizing location and relative orientation. In
addition, within the Assembly Ontology shapes can only be distinguished based on the number of sur-
faces, edges, vertices and holes that they contain (e.g., the ontology cannot distinguish between a circle
and an oval, or between a diamond and a square). Exact geometric shapes cannot be described by the
Assembly Ontology since the sub-theories of geometry that are adopted by the ontology do not include
congruence relations. Other geometric relations (such as straight lines, flat surfaces, relative alignment
and curvatures) are also not definable within the ontology.

7. Applying the Assembly Ontology

In this section we discuss the application of the Assembly Ontology to the representation of the sus-
pension systems described in Section 4.

In a beam axle suspension system (Figure 2), the system consists of two wheels, two shocks, and
a beam. These components are connected to each other by fixed or ball joints. Before we specify the
description of beam axle designs, we discuss axiomatization of properties of these components and the
two types of joints, using the Shape Ontology.

7.1. Axiomatic Description of Components

The wheels have a torus shape, the shocks are cylindrical, and the beam is a cube. A torus is a single
surface with a ring shape. In the language of the Shape Ontology, this is equivalent to say that a torus is
a box that has exactly one boundary surface, and no edges or vertices:

(∀x) torus(x) ≡ (box(x) ∧ (∃s) sur f ace_bound(s, x) ∧ (∀s1)sur f ace_bound(s1, x) ⊃ (s1 = s)).

A cylinder can be defined as a box with exactly three boundary surfaces, where two of the surfaces
have a circular shape, and the third one shares a common edge with each of the other two surfaces. A
circular shape is a surface which has exactly one boundary edge:

(∀s) circular(s) ≡ (sur f ace(s) ∧ (∃e) edge_bound(e, s) ∧ (∀e1)edge_bound(e1, s) ⊃ (e1 = e)).

Similarly, a cube can be defined as a box with exactly eight quadrilateral boundary surfaces and at
least twelve boundary edges, where a quadrilateral shape is defined as a surface with four boundary
edges and four vertices.

Having the axiomatic definitions of the shapes of the components, we can state the following:

(∀x) beam(x) ⊃ cube(x).

(∀x) wheel(x) ⊃ cylinder(x).

(∀x) shock(x) ⊃ torus(x).
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Additionally, we state that beams, wheels, and shocks are disjoint classes of components:

(∀x) beam(x) ⊃ ¬wheel(x) ∧ ¬shock(x).

(∀x) wheel(x) ⊃ ¬shock(x).

7.2. Axiomatic Description of Joints

As we explained in Section 4, we idealize a fixed joint as a shared surface between two components,
and a ball joint as a shared point:

(∀x, y) f ixed_ joined(x, y) ≡ (box(x) ∧ box(y) ∧ (∃z)sur f ace(z) ∧ in(z, x) ∧ in(z, y)).

(∀x, y) ball_ joined(x, y) ≡ (box(x) ∧ box(y) ∧ (∃z)point(z) ∧ in(z, x) ∧ in(z, y)).

7.3. Axiomatic Description of Suspension Systems

We consider a beam axle suspension system as a poly that is incident with an element a, where two
wheels, two shocks, and a beam are proper parts of a. Notice that in this case Tmt_mom implies that the
wheels, the shocks, and the beam are also incident with the suspension system. The beam and the shocks
are connected to the wheels respectively by fixed and ball joints. Moreover, the shocks and the beam are
between the two wheels:

(∀x) beam_axle(x) ⊃ poly(x) ∧ (∃a,w1,w2, s1, s2, b)beam(b) ∧ wheel(w1) ∧ wheel(w2)

∧shock(s1) ∧ shock(s2) ∧ ¬(s1 = s2) ∧ ¬(w1 = w2)

∧box_PP(b, a) ∧ box_PP(w1, a) ∧ box_PP(w2, a) ∧ box_PP(s1, a) ∧ box_PP(s2, a)

∧ f ixed_ joined(w1, b) ∧ f ixed_ joined(w2, b) ∧ ball_ joined(w1, s1) ∧ ball_ joined(w2, s2)

∧xbetween(w1, s1,w2) ∧ xbetween(w1, s2,w2) ∧ xbetween(w1, b,w2) ∧ in(a, x).

where box_PP(x, y) denotes that x is a proper part of y and is defined by the following sentence:

(∀x, y) box_PP(x, y) ≡ box_part(x, y) ∧ ¬box_part(y, x).

Note that specifying a suspension system as a poly, instead of a box, enables us to represent it as a
subsystem, rather than a subassembly, of a larger system.

The swing axle design can be described using a similar axiomatization, except that instead of one
beam, there are two beams that are incident with the suspension system and are connected together by a
ball joints (see Appendix A.1). Similarly, a double wishbone design is a poly with a similar description
as beam_axle, except that it is incident with four beams, two struts, and a chassis, where the struts are
idealized as cubes, and the chassis is a quadrilateral surface (see Appendix A.2).

To relate the presented ontology to the existing work and show its capability of representing various
design entities, we have provided axiomatic definitions of assembly joining methods (presented by Kim
et al. (2008)) in Section A.3.
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8. Conclusion

We presented a first-order ontology, called the Assembly Ontology, for specifying properties of me-
chanical assemblies. The primary application for this ontology is to express qualitative design constraints
for a generative design tool.

The Assembly Ontology contains three modules: the Shape Ontology, the MT Multidimensional
Object Mereotopology (MT MOM), and the Boundary Ontology. The Shape Ontology is a multi-
dimensional theory of shapes, developed based on the Hilbert’s axiomatic theory of geometry, and is
capable of representing shapes of entities with various dimensionality. The MT MOM extends the Shape
Ontology to a multi-dimensional mereotopology capturing parthood and connection relations between
equi-dimensional entities. The Boundary Ontology axiomatizes properties of boundary entities of an
entity.

We demonstrated the application of the Assembly Ontology to specifying qualitative properties of
suspension systems, as well as in defining different types of assembly joints.

In addition to subassemblies, the Assembly Ontology provides formalisms for representing subsys-
tems of products and for formal description of assemblies with the same mereotopological structures
but different relative configuration of components. The ontology provides an explicit axiomatization of
its intended requirements, where the requirements are extracted based on the existing assembly formal-
izations, and with consideration of real-world manufacturing products such as suspension systems. The
ontology is highly reusable as its modular design and use of sorted relations specific to particular classes
of entities enable extension of a module of the ontology with minimal effect on the other modules.

There are three directions for future work:

• A formal verification of the presented ontology is required in order to demonstrate the correctness
and completeness of the ontology with respect to its intended models (Aameri and Gruninger,
2015). Such a verification includes specifying the semantic requirements of the ontology by stan-
dard mathematical structures, characterizing the models of the ontology up to isomorphism, and
showing that the models of the ontology are equivalent to the intended structures for the ontology.
• The axiomatic representation of dynamic behavior of mechanical assemblies needs axiomatic the-

ories of kinematics concepts as well as ontologies for relative orientation. Development of such
theories is part of future work.
• The ultimate goal of this work is to use ontologies in pruning the search space for a generative

design tool by generating all structures, with a specific finite cardinality, that satisfy the axioms
of the ontology. The existing automated theorem provers, however, are designed for consistency
checking, and are not efficient in generating all possible models of a theory. Part of the future
work is, therefore, to develop algorithms for automated construction of models of the Assembly
Ontology.

Appendix A

A.1. Axiomatic Representation of Swing Axle Design

(∀x) swing_axle(x) ⊃ poly(x) ∧ (∃a,w1,w2, s1, s2, b1, b2)beam(b1) ∧ beam(b2)
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∧wheel(w1) ∧ wheel(w2) ∧ shock(s1) ∧ shock(s2) ∧ ¬(b1 = b2) ∧ ¬(s1 = s2) ∧ ¬(w1 = w2)

∧box_PP(b1, a) ∧ box_PP(b2, a) ∧ box_PP(w1, a) ∧ box_PP(w2, a) ∧ box_PP(s1, a)

∧box_PP(s2, a) ∧ ball_ joined(b1, b2) ∧ f ixed_ joined(w1, b1) ∧ f ixed_ joined(w2, b2)

∧ball_ joined(w1, s1) ∧ ball_ joined(w2, s2) ∧ xbetween(w1, s1,w2) ∧ xbetween(w1, s2,w2)

∧xbetween(w1, b1, b2) ∧ xbetween(b1, b2,w2) ∧ in(a, x).

A.2. Axiomatic Representation of Double Wishbone Design

(∀x) double_wishbone(x) ⊃ poly(x)

∧(∃a,w1,w2, s1, s2, b1, b2, b3, b4, st1, st2, ch) beam(b1) ∧ beam(b2) ∧ beam(b4) ∧ beam(b5)

∧wheel(w1) ∧ wheel(w2) ∧ shock(s1) ∧ shock(s2) ∧ strut(st1) ∧ strut(st2)

∧chassis(ch) ∧ ¬(b1 = b2) ∧ ¬(b1 = b3) ∧ ¬(b1 = b4) ∧ ¬(b2 = b3) ∧ ¬(b2 = b4)

∧¬(b3 = b4) ∧ ¬(st1 = st2) ∧ ¬(s1 = s2) ∧ ¬(w1 = w2) ∧ box_PP(b1, a)

∧box_PP(b2, a) ∧ box_PP(b3, a) ∧ box_PP(b4, a) ∧ box_PP(w1, a) ∧ box_PP(w2, a)

∧box_PP(s1, a) ∧ box_PP(s2, a) ∧ box_PP(st1, a) ∧ box_PP(st2, a) ∧ box_PP(ch, a)

f ixed_ joined(w1, st1) ∧ f ixed_ joined(w2, st2) ∧ ball_ joined(w1, s1) ∧ ball_ joined(w2, s2)

∧ball_ joined(b1, st1) ∧ ball_ joined(b2, st1) ∧ ball_ joined(b3, st2) ∧ ball_ joined(b4, st2)

∧ball_ joined(b1, ch) ∧ ball_ joined(b2, ch) ∧ ball_ joined(b3, ch) ∧ ball_ joined(b4, ch)

∧xbetween(w1, s1,w2) ∧ xbetween(w1, s2,w2) ∧ xbetween(w1, st1, ch) ∧ xbetween(ch, st2,w2)

∧xbetween(w1, ch,w2) ∧ xbetween(st1, b1, ch) ∧ xbetween(st1, b2, ch) ∧ xbetween(st2, b3, ch)

∧xbetween(st2, b4, ch) ∧ in(a, x).

A.3. Axiomatic Representation of Joining Methods

Kim et al. (2008) present a classification of assembly joining methods and use Smith’s mereotopol-
ogy (Smith, 1996) to axiomatically specify these classes. However, their axiomatization is incomplete
in the sense that it does not capture the intended specifications of different types of joints (Aameri
and Gruninger, 2017). This section demonstrates the axiomatization of three types of joining methods
classified by Kim et al. (2008), namely fastening, welding, and spot welding, using the the Assembly
Ontology.

When fastening two three-dimensional components, one of the boundary surfaces of one component
is connected (in the topological sense) to one of the boundary surfaces of the other. However, if we weld
two three-dimensional objects, the mating features of the objects will be transformed into one entity,
and more importantly, the surface will not be a boundary surface anymore. In other words, two welded
objects share a common geometric entity:

(∀x, y) f astened_box(x, y) ≡ (box(x) ∧ box(y) ∧ ¬(x = y)∧
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(∃z,w)¬(z = w) ∧ sur f ace_bound(z, x) ∧ sur f ace_bound(w, y) ∧ sur f ace_C(z,w)).

(∀x, y) welded_box(x, y) ≡ (box(x) ∧ box(y) ∧ ¬(x = y)

∧(∃z)(point(z) ∨ edge(z) ∨ sur f ace(z)) ∧ in(z, x) ∧ in(z, y)).

Considering the above description of welding, two spot-welded objects share a point:

(∀x, y)spot_welded_box(x, y) ≡ (box(x) ∧ box(y) ∧ ¬(x = y) ∧ (∃z)point(z) ∧ in(z, x) ∧ in(z, y)).

Different types of fastening methods classified in Kim et al. (2008) (namely, fastening by threaded
fasteners, fastening by rivets, and fastening by compression) can also be defined by using the Shape
Ontology in describing shapes of the fastening objects.
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