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1 Introduction

The Multi-attribute Diverse Weighted Bipartite b-Matching (MDWBM) problem
has been recently introduced to simultaneously maximize the quality and diver-
sity of a bipartite b-matching [1]. The quality is measured by weighted costs of
assignments and the diversity is calculated in terms of differences across multiple
feature classes. Ahmadi et al. [1] proved that MDWBM is NP-hard and tackled
it with a mixed integer quadratic programming (MIQP) model and an exact
local exchange algorithm. However, there are flaws in both of these approaches.

2 Flaws in Ahmadi et al.

Ahmadi et al. [1] proposed an mixed integer quadratic programming (MIQP)
model for the standard MDWBM and also introduced an local exchange al-
gorithm based on negative cycle detection. However, both the model and the
algorithm are flawed.

2.1 The MIQP model

Ahmadi et al.’s MIQP model is as follows:

min
c
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wu,f,gf · cu,f,gf+ (1a)
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∑
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s.t.
∑
f∈F

∑
gf∈Gf

cu,f,gf = du,∀u ∈ U, (1c)

∑
u∈U

cu,f,gf = |F g
f |,∀f ∈ F,∀gf ∈ Gf , (1d)

cu,f,gf ≥ 0,∀u ∈ U,∀f ∈ F,∀gf ∈ Gf .. (1e)

Here cu,f,gf are integer decision variables representing the number of workers
assigned to team u having value gf ∈ Gf for feature class f ∈ F . The constraint



2 J. Zhang et al.

(1d) is to ensure that the number of workers with feature value gf assigned to
all the teams equals |F g

f |.
There is a likely typographical error in (1c). The summation equals |F | × du

instead of du if the double sum is being used. The correct form of the constraint
is: ∑

gf∈Gf

cu,f,gf = du,∀u ∈ U,∀f ∈ F. (1c’)

However, even with this correction, the model is still incorrect w.r.t. the
problem definition. The key insight is that the decision variables do not represent
assignments. Thus, there is no bijection between the set of assignments and the
set of solutions to the MIQP model. We denote the MIQP model after correction
(1a, 1b, 1c’, 1d, 1e) by QM . We use a worker-team assignment example in Table
1 to show the problem.

Feature

Worker f1 f2 f3

r1 1 0 1
r2 1 1 0
r3 0 0 0
r4 0 1 1

Table 1. Example for MIQP Model.

The instance has two teams, four workers, and three feature classes. Each
feature class has two possible values: 0 and 1. Let the assignment cost of each
worker to each team be the same. We want to assign two workers to each of the
two teams and maximize diversity, i.e., make two workers have different values
for as many feature classes as possible. There exists no solution that is diverse in
terms of the three classes, because each pair of workers matches on one feature
class.

However, if we use the MIQP model QM , we are able to achieve diversity
on all the three feature classes. For example, {cu,f,gf = 1, ∀u ∈ {1, 2},∀f ∈
{1, 2, 3},∀gf ∈ {0, 1}} is an optimal solution to QM . We can see that constraints
(1c’) are satisfied:

c1,1,0 + c1,1,1 = 2, c1,2,0 + c1,2,1 = 2,c1,3,0 + c1,3,1 = 2,

c2,1,0 + c2,1,1 = 2, c2,2,0 + c2,2,1 = 2,c2,3,0 + c2,3,1 = 2.

Also, constraints (1d) are satisfied:

c1,1,0 + c2,1,0 = |F 0
1 | = 2 = c1,1,1 + c2,1,1 = |F 1

1 |,
c1,2,0 + c2,2,0 = |F 0

2 | = 2 = c1,2,1 + c2,2,1 = |F 1
2 |,

c1,3,0 + c2,3,0 = |F 0
3 | = 2 = c1,3,1 + c2,3,1 = |F 1

3 |.

Thus, QM is incorrect since it decouples the combination of feature values from
an assignment.
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2.2 The local exchange algorithm

Ahmadi et al. also proposed a local exchange (LE) algorithm for MDWBM. The
algorithm starts from a feasible solution and changes assignment to decrease the
objective while satisfying all the constraints. A series of moves that leads to a
decrease in the objective is called a negative cycle. The algorithm stops when it
cannot find negative cycle. Obviously, the algorithm stops at a local optimum.
The authors claimed and proved that the local optimum is also the global op-
timum [1]. However, we show a counter-example in Table 2 that disproves the
claim.

Feature value Assignment cost

Worker g1 g2 g3 t1 t2

r1 0 6 2 8 9
r2 0 0 4 10 9
r3 0 0 1 11 9
r4 1 6 3 7 12
r5 1 5 3 7 15
r6 0 7 0 9 14

Table 2. Example for local exchange algorithm.

The example is also in the worker-team assignment context. There are two
teams and six workers with three feature classes. Each team needs exactly three
workers. The three feature values of each worker and the costs of assigning
workers to the two teams are shown in the table. With λ0 = 1, λ1 = 2, λ2 =
5, λ3 = 4, a locally optimal solution sL assigns workers r1, r2, r5 to t1 and workers
r3, r4, r6 to t2. The objective value of this solution is 134. By contrast, the
globally optimal s∗ solution assigns workers r2, r4, r6 to t1 and workers r1, r3, r5
to t2, with the objective being 133. The local exchange algorithm cannot escape
the locally optimal solution. To demonstrate this fact, we present the marginal
costs of local moves from sL in Table 3.

move cost move cost move cost

1i3o 11 2i3o -1 5i3o 20
1i4o 5 2i4o 13 5i4o 8
1i6o 11 2i6o 9 5i6o 20

3i1o 12 4i1o 7 6i1o -5
3i2o 2 4i2o 17 6i2o -5
3i5o 16 4i5o 5 6i5o -1

Table 3. Marginal costs of local moves from sL.

The ‘1i3o’ in the table is a local step moves r1 into t2 and r3 out of t2.
The cost of ‘1i3o’ is composed of two parts. The first is the objective (including
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the weighted costs and similarity measures) difference between [t1 : (r2, r5), t2 :
(r1, r3, r4, r6)] and sL. The second part adds −2λf to the cost if r1 and r3 have
the same feature value for feature class f [1]. The LE algorithm considers all the
cycles in the table. For example, 1i3o → 3i2o → 2i6o → 6i1o forms a cycle. The
total gain of the cycle is 11 + 2 + 9− 5 = 17 > 0.

Any cycle which moves a node from a team (e.g., 3o in 2i3o) must also contain
a move that inserts the same node (e.g., 3i). There are moves that can convert sL

to s∗, such as the cycle 1i6o → 6i5o → 5i4o → 4i1o. Observe that any negative
cycle must contain at least one move with a negative cost. For each negative ‘o’
in the table, all corresponding ‘i’ moves result in a non-negative cost. Thus, any
cycle extracted from Table 3 has a non-negative gain. The LE algorithm hence
gets stuck in sL and does not guarantee to find the globally optimal solution.
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