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Abstract
In realistic scheduling problems, there may be choices
among resources or among process plans. We formulate a
constraint-based representation of alternative activities to
model problems containing such choices. We extend existing
constraint-directed scheduling heuristic commitment tech-
niques and propagators to reason directly about the fact that
an activity does not necessarily have to exist in a final sched-
ule. Experimental results show that an algorithm using a
novel texture-based heuristic commitment technique
together with extended edge-finding propagators achieves
the best overall performance of the techniques tested.

Introduction
Scheduling problems addressed in the constraint-directed
scheduling literature typically have a static activity defini-
tion: each activity must be scheduled on its specified
resource(s). It is common, however, in real-world schedul-
ing problems to have a wider space of choices. There may
be multiple process plans for the production of an inven-
tory, or an activity may have a number of resources on
which it could execute. In this paper, we show how both
these alternatives (alternative process plansin the former
case andalternative resourcesin the latter) can be
addressed by explicit representation of and reasoning about
alternative activities.

A simple example is shown in Figure 1. The activity net-
work represents a choice of paths from activity A1 to activ-
ity A5: the intervening activities may be A2, A3, and A4, or
A6 and A7. We describe the “XOR” nodes in detail in the
body of this paper. For now it is sufficient to understand that
they represent alternative paths in the activity network and,
in a final solution, only one of the alternative paths can be
present. Part of the scheduling problem, then, is to decide if
A2, A3, and A4 will execute, or if A6 and A7 will execute.

The literature provides two general approaches to alter-
native activities. The first (Nuijten, 1994; Le Pape, 1994;

Baptiste and Le Pape, 1995) represents alternatives wit
variable in the constraint representation. While much wo
within this approach depends on propagation techniques
significantly prune the search space, to our knowledg
none of the sophisticated propagators developed over
past few years have been extended to directly reason ab
activities that may not exist in a solution. The secon
approach is that of multiple alternative decompositio
(MAD) where the alternatives are not represented as int
nal variables, but rather as separate activities and proc
plans (Saks et al., 1993; Kott and Saks, 1998). While te
ture-based heuristics have been applied to such a decom
sition, propagators and backtracking have not yet be
integrated with the overall heuristic approach.

Our approach to scheduling alternative activities build
on the literature. We explicitly represent the alternativ
activities following the MAD approach, and in addition, we
employ constraint mechanisms to directly reason about
relationships among activities that may not exist in a sol
tion. This allows us to adapt existing texture-based heur
tics and propagation techniques.

Probability of Existence
As may be anticipated from Figure 1, the addition of ne
types of temporal nodes is central to our novel techniqu
Before addressing those issues, however, we turn to the r
resentation of the fact that an activity may not exist in
final solution to a scheduling problem.

Following the knowledge-based approach to scheduli
(Fox, 1983; Fox, 1986), our first task in addressing pro
lems with alternative activities is to represent that an act
ity may not exist in a final solution. Theprobability of
existence(PEX) of an activity, therefore, is the estimate
probability at a search state that an activity will exist in
solution. The PEX value of an activity is in the range [0, 1
with 1 indicating that an activity will certainly exist and 0
indicating that it will certainly not. Returning to Figure 1
neither A1 nor A5 have alternatives; they must exist in a
solution and so their PEX values are 1. Without addition
information, each of the alternative paths between A1 and
A5 is equally likely. The initial PEX values for all other
activities, therefore, is 0.5.

With the addition of PEX variables to each activity, w
face two challenges. First, we need to maintain consist
PEX values among activities related by temporal co

Figure 1. A Process Plan with Alternatives. The duration of
each activity is shown in the lower left corner of the activity.
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straints. PEX propagation must ensure that if we make a
PEX commitment, such as assigning the PEX value of A3
to 1, the PEX values of the related activities would be
appropriately reset. In our example, the PEX variables of
A2 and A4 should also be set to 1 and the PEX variables of
A6 and A7 should be set to 0. Second, we need to also main-
tain a consistent temporal network given that some of the
activities may not execute in a solution. Returning to the
original state in Figure 1 (i.e., before assigning the PEX of
A3 to 1), standard temporal propagation would derive the
start time window of A1 to be [0, 45]. It is possible, how-
ever, for A1 to start as late as time 55 if the path through A2,
A3, and A4 is chosen. Clearly, we need to modify the tem-
poral propagation to account for the PEX values. In addi-
tion, we would like to be able to discover when a particular
path is no longer consistent. Assume that the two alterna-
tives in Figure 1 are still possible and that through some
other scheduling decision the earliest start time of A1 is
increased to 46. In such a situation, we would like to detect
that A6 and A7 cannot be consistently executed.

Limitations on the PEX Implementation
Each activity in the temporal graph has a PEX variable;
however, the variable is not a true domain variable in the
usual CSP sense. In a solution, all PEX values must be
either 0 or 1, while during search each PEX variable should
have a single value representing the current estimated prob-
ability of existence, rather than a domain of values. In a
constructive search, if, in search state,S, a PEX variable is
set to either 0 or 1, that value must be maintained in all
search states belowS. If a PEX variable has not been
assigned to either 1 or 0, it varies during search on the
domain [0,1] according to the PEX propagation algorithm.

There are a number of limitations that we have placed on
the PEX representation in order to simplify the implementa-
tion. In particular, we make the following assumptions:
• The only commitments that can be made on a PEX vari-

able are to assign it to either 0 or 1. PEX propagation will
reset the PEX values of other activities appropriately.

• Each choice that remains to an alternative is equally
likely: we assume that we do not have any external
knowledge that biases the alternatives.

Adding PEX to the Temporal Network
Reasoning with PEX variables is achieved partly via the
addition of XorNodes to the temporal network. A XorNode
represents an exclusive-or constraint among a set of sub-
graphs which may themselves contain XorNodes. If a Xor-
Node is present in the final solution then one and only one
of the nodes directly connected upstream (resp. down-
stream) can be present. If a node directly connected
upstream (downstream) to a XorNode exists in a solution,
so must the XorNode.

As noted above, for the purposes of this paper, we further
limit the XorNode behaviour by specifying that all nodes
directly connected upstream (or downstream) must have
equal PEX values. If a XorNode has a PEX value ofx, andk

upstream andl downstream links, the PEX value of eac
directly connected upstream node must bex/k and the PEX
value of each directly connected downstream node must
x/l. The only exception to the rule of even division is whe
the upstream or downstream node has a PEX varia
assigned to 0 or 1. If a neighboring (wolog) upstream no
already has a PEX value of 0, it is not included in PE
propagation: the PEX value at the XorNode is simp
divided among the upstream nodes whose previous P
were greater than 0. If the neighboring (wolog) upstrea
node has a PEX value of 1, all the other directly linke
upstream nodes must have a value of 0.

Propagating PEX
The basic PEX propagation is achieved through the beh
ior at each temporal node. At an activity,A, all the non-Xor-
Nodes directly linked toA must have the same PEX value
as A. For XorNodes, the sum of the PEX values for a
nodes directly connected upstream must be equal to the s
of all nodes directly connected downstream which in tu
must be equal to the PEX value of the XorNode.

Initial PEX propagation begins with a temporal networ
where PEX values are unassigned and consistently ass
the PEX variables. If a node has either no upstream or
downstream links it can not be subject to a XorNode a
therefore must be present in the final solution. The initi
PEX propagation algorithm begins by assigning a PE
value of 1 to all these activities. Based on a topologic
ordering of the activities in the graph, found with a depth
first search, these initial values are propagated through
the graph. The complexity of the initial propagation givenn
nodes andm temporal constraints isO(max(m, n)). Space
limitations preclude presentation of the full algorithm her
See (Beck, 1999) for more details.

Incremental PEX propagation starts with a consiste
network and some change to a PEX value. The change
represented by the addition of a new unary constra
assigning a PEX variable to either 0 or 1. Again, space p
cludes full presentation of the algorithm; however, a
example serves to illustrate the process. Figure 2 presen
temporal network. Assuming X1 and X7 both have an initial
PEX value of 1 and that, after initial propagation, we ad
the unary PEX constraint assigning the PEX value of act
ity A1 to 1, Table 1 shows the PEX values of a subset
nodes before and after incremental PEX propagation.

As shown in Figure 2, XorNodes can be nested: the alt
native represented by X3 and X4 is nested within the alter-
native represented by X2 and X6 which is nested within the
alternative represented by X1 and X7. The initial step of the
PEX propagation is to identify the inner-most XorNode
relevant to the node whose PEX is being assigned. Hav
identified these nodes (X3 and X4) we propagate from A1
upstream to X3 and downstream to X4. This propagation
assigns a PEX value of 1 to both X3 and X4. We then propa-
gate downstream along all paths from X3 to X4 following
the same rules as with initial propagation. In this case, t
propagation sets the PEX of A2 to 0.
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The PEX values of X3 and X4 have been reset and there-
fore we continue propagation. This continuation is acas-
cadeof PEX propagation. The only difference from the first
round of incremental propagation is the nodes that form the
starting point. Rather than starting with A1, we now start
with the inner-most XorNodes from the previous iteration.
In our example, we begin with X3 and identify the inner-
most XorNode upstream (X2). Starting from X4, we iden-
tify the inner-most downstream XorNode (X6). As with the
initial iteration, we now reset the PEX values of the identi-
fied XorNodes (to 1 in this case) and PEX propagate down-
stream from X2 to X6. The second cascade of PEX
propagation will reassign the PEX value of X5 (to 1), the
PEX values of the activities between X4 and X5 (to 0.5),
and the PEX values of all nodes along any path from X2 to
X9 (to 0). One more cascade assigns the PEX values of all
nodes in the “Arbitrary Legal Subgraph” to 0.

At worst, PEX propagation will requireO(n) cascades
where n is the number of temporal nodes in the graph,
since, in the extreme case, there can beO(n) nested alterna-
tives. Each cascade incurs a worst-case complexity of
O(max(n, m)). Therefore, the overall worst-case complexity
is O(max(n2, nm)).

Temporal Propagation with PEX
There are three differences in temporal propagation when
XorNodes are present in the network.

1. Propagation through a XorNode is different than prop
gation through an activity.

2. When there are nodes with PEX < 1 in the graph, a st
where an activity has an empty domain may not be
dead-end, but may indicate an implied PEX commitmen

3. Temporal propagation is done after PEX propagation.

Temporal Propagation through a XorNode. The tempo-
ral semantics of a XorNode require that it start at or aft
the finish time of at least one of its upstream neighbors a
it must end at or before the start time of at least one of
downstream neighbors. During downstream propagatio
therefore, the XorNode sets the lower-bound on its st
time based on the minimum earliest finish time of it
upstream neighbors. This start time is then propagated f
ther downstream. During upstream propagation, the ana
gous process is followed.

A pair of XorNodes representing an alternative enforc
an interval of time between themselves. This interval is t
length of the shortest path between them (where path len
is computed as the sum of the minimum durations of th
temporal nodes on the path).

Deriving Implied PEX Commitments. In standard tem-
poral propagation, if it is discovered that a variable
domain has been emptied, a dead-end is derived. Wh
PEX variables are present, emptying a domain may indic
that a particular PEX variable must have a value of 0. Wh
a domain is emptied in temporal propagation, the PE
value of the temporal node with the emptied domain
examined. If the PEX value is less than 1, the node
marked to indicate that the PEX value has been determin
to be 0 and temporal propagation does not continue fro
that node. After temporal propagation, a separate algorit
asserts unary PEX commitments on the marked nodes,
then the usual PEX and temporal propagation is done.

If the domain of a temporal node with PEX of 1 is emp
tied, a dead-end is derived as in the standard temporal pr
agation. To see why this is the case, imagine emptying
start time domain of an activity,A, with a PEX value of 1.
By definition, it can not have any enclosing XorNode
Assume that the presence of some activity,B, with a PEX
value of less than 1 caused the empty domain. The tempo
propagation fromB to A must occur through one of the Xor-
Nodes enclosingB. If that propagation emptiesA, then it
must be that case that not onlyB but all its alternatives are
inconsistent withA. Therefore, it is a true dead-end.

Temporal Propagation after PEX Propagation. After
PEX propagation, temporal propagation must be pe
formed, once for each PEX propagation cascade, to
establish a temporally consistent network. Returning to o
example in Figure 2, recall that after assigning activity A1 a
PEX value of 1, three cascades of PEX propagation we
performed: X3-X4, X2-X6, and X1-X7. Starting from the
first cascade, temporal propagation must proceed upstre
from the first upstream XorNode (X3) and downstream
from the first downstream XorNode (X4). It is then neces-
sary to perform temporal propagation upstream from t
second upstream XorNode (X2) and downstream from the

Node Initial PEX Values PEX Values After
Commitment

X1 1.0 1.0

X2 0.5 1.0

X3 0.25 1.0

A1 0.125 1.0

A2 0.125 0

X4 0.25 1.0

X5 0.25 1.0

X6 0.5 1.0

X7 1.0 1.0

Table 1: PEX Values for a Subset of the Nodes in Figure 2.

X8 X9

X4 X5
X3

X6

Activity

XorNode

X1

X7

Arbitrary
Legal
Subgraph

A1

A2

A4

Figure 2. An Example of Cascading PEX Propagation.

X2
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second downstream XorNode (X6) and finally from the
third pair of XorNodes (X1 and X7).

PEX and Heuristics
With the ability to represent and propagate the fact that
some temporal nodes may not be present in a final sched-
ule, it is necessary to extend heuristic search techniques.
Here we extend three heuristics to incorporate PEX: Sum-
Height, CBASlack, and LJRand.

SumHeightPEX. The SumHeight heuristic (Beck
et al., 1997b) analyzes the constraint graph (via a texture
measurement) to identify the critical points at which a com-
mitment should be made. A commitment is then made to
attempt to decrease the criticality. The constraint graph
analysis begins a probabilistic estimate of the demand of
each activity for each resource. The individual demand,
ID(A,R,t), is (probabilistically) the amount of resourceR,
required by activityA, at timet. It is found as follows, for
all estA ≤ t < lftA (estA, lftA, durA, andSTDA are, respec-
tively, the earliest possible start time, the latest possible
start time, the duration, and the domain of possible start
times for activityA):

 (1)

The individual demands for each activity on a resource
are then summed to give an estimate of the aggregate
demand for a resource over time. The most critical resource
and time point is, by definition, the one with highest aggre-
gate demand. Given critical resourceR* and time pointt* ,
the SumHeight heuristic identifies the two activities that
contribute the most individual demand toR* at t* that are
not already linked by a path of temporal constraints. This
activity pair is heuristically sequenced.1

PEX values are incorporated into the SumHeight heuris-
tic by modifying the individual demand and by widening
the commitments that can be made. The modification to
incorporate PEX into the individual demand,IDPEX(A,R,t)
multiplies byAPEX, the PEX value of activityA:

 (2)

This modification has the effect of vertically scaling the
individual activity demand curve. If the PEX value ofA is
0.5, the individual demand at any time pointt, is half what
the demand would be if the PEX value were equal to 1. This
modification fits with our semantic interpretation of indi-
vidual demand to be the probabilistic demand of an activity
at a time point. Because we interpret a PEX value as an
activity’s probability of existence, an activity that has only a
50% likelihood of existing has half the probabilistic
demand of an identical activity that will definitely exist.2

Using IDPEX, the individual demands are calculated an
aggregated, and the resource and time point with high
criticality is identified. We, then, identify three activities:
• The activity,A, with highest individual demand for the

R* at t* with PEX value,APEX, 0 <APEX < 1.
• The pair of activities,B and C, that are not sequenced

with PEX values of 1, and with the highest individua
demand forR* at t* . Assume the individual demand of
activity B at t*  is greater than or equal to that ofC.
A heuristic commitment is found by comparing the ind

vidual demand forA at t* with that ofB. If A is higher, it is
the most critical activity and since it has a possibility of no
existing, the heuristic commitment removes it from th
schedule by setting its PEX value to 0. IfB is of higher crit-
icality, then it is necessary to sequenceB andC to reduce
criticality. We use the sequencing heuristics presented
(Beck et al., 1997b). If a PEX commitment is retracted via
complete retraction technique, we post its opposite, sett
the PEX value ofA to 1. Similarly, if the sequencing com-
mitment is retracted, we post the reverse sequence.

CBASlackPEX. The CBASlack heuristic (Smith and
Cheng, 1993; Cheng and Smith, 1997) identifies the pair
activities on the same resource that have the minimu
biased-slack measurement, and sequences them so a
preserve the maximum amount of slack.

To adapt the CBASlack heuristic, we calculate th
biased-slack only for activities with a PEX value greate
than 0. The following three conditions then apply to a pa
1. If both activities have a PEX value of 1, post the sequen

ing constraint that preserves the most slack.
2. If one activity,A, has a PEX value of 1 and the other,B,

has a PEX value of less than 1, the greatest amount
slack is preserved by setting the PEX value ofB to 0.

3. If both activities have a PEX value of less than 1, th
greatest amount of slack is preserved by setting the P
value of the activity with the longest duration to 0.
If any commitment is retracted, we post its opposite (th

other sequence for case 1, or setting the PEX value to 1
cases 2 and 3) to guarantee a complete search.

LJRandPEX. The LJRand heuristic (Nuijten, 1994) finds
the smallest earliest finish time of all the unscheduled act
ities and identifies the set of activities which can sta
before this time. One activity in this set is selected ra
domly and scheduled at its earliest start time. When bac
tracking, the earliest start time of the activity is updated
the minimum earliest finish time of all other activities on
that resource.

Our modification of LJRand to incorporate PEX vari
ables, LJRandPEX, performs the following steps:
1. Find the smallest earliest finish time of all unschedule

activities with PEX greater than 0.
2. Identify the set of activities with PEX values greater tha

0 that can start before the minimum earliest finish time
3. Randomly select an activity,A, from this set.
4. AssignA to its earliest start time and assignAPEX to 1.

The alternative commitment, should backtracking und
the commitment on activityA, is to update the earliest star

1. See (Beck et al., 1997b) for details of the sequencing heuristics.
2. This is the same modification to individual demand used in the
KBLPS scheduler to incorporate a notion similar to PEX into tex-
ture-based heuristics (Carnegie Group Inc., 1994).

ID A R t, ,( )
min t lstA,( ) max t durA– 1+ estA,( )–

STD
------------------------------------------------------------------------------------------------=

IDPEX A R t, ,( ) APEX I× D A R t, ,( )=
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time of A to the minimum earliest finish time of all other
activities with PEX > 0 on thesame resource asA. The
alternative does not contain a PEX commitment: subse-
quent commitments can still assignAPEX to either 1 or 0.

The Information Content of the Heuristics
SumHeightPEX uses the actual PEX value while LJRand-
PEX and CBASlackPEX only use the PEX variable as a
three-value variable: 0, 1, or neither-0-nor-1. We expect that
because the texture-based heuristics take into account the
information represented by the value of the PEX variable,
they will outperform the other heuristics. We do not incor-
porate the PEX value more deeply into the non-texture heu-
ristics in order to evaluate this expectation.

PEX and Edge-Finding
Edge-finding exclusion (Nuijten, 1994) and not-first/not-
last (Nuijten, 1994; Baptiste and Le Pape, 1996) are power-
ful propagation techniques. Based on an analysis of the
time windows of activities, they are, in some situations,
able to deduce constraints implied by the current search
state. While the algorithms embody different implication
rules and find different implied constraints, they depend on
all activities having to be present in a final solution.

Edge-finding exclusion and not-first/not-last can clearly
be used with activities with a PEX value of 1. Imagine the
situation, however, where all activities on a resource but
one,A, have a PEX value of 1. If a dead-end is found by
edge-finding, we can soundly infer that activityA can not
execute and setAPEX to 0. If edge-finding derives new
unary temporal constraints onA, they can be soundly
asserted: ifA is to execute, it must be consistent with the
rest of the activities that must execute on the same resource.
If edge-finding derives unary temporal constraints on activ-
ities other thanA, they must be discarded. It is possible for
A not to execute, so we can not soundly constrain the activi-
ties that have PEX values of 1.

This reasoning leads to the PEX-edge-finding algorithm
that uses the usual edge-finding algorithms as sub-routines.
First, the usual edge-finding is run on all activities with
PEX values of 1. Then, for each activity with a PEX value
between 0 and 1, its PEX value is temporarily set to 1 and
the edge-finding algorithms are run again. Any new con-
straints are filtered as described above. Given that the stan-
dard edge-finding worst-case complexity isO(n2), the PEX-
edge-finding worst-case complexity isO(n3). It is possible
that this time-complexity can be improved and it is cer-
tainly the case that the average time performance can be
improved by specializing the code.

Empirical Evaluation
The empirical evaluation of the PEX techniques focuses on
problems with alternative process plans, and problems with
both alternative process plans and alternative resources. The
PEX techniques presented are applicable, without exten-
sion, to both types of problems: alternative resources are
treated as a nested alternative within a process plan.3

The primary goal of the evaluation is to determin
whether using the extra information represented by PE
values results in better heuristic commitments and over
search performance. A second goal is the evaluation of
PEX edge-finding techniques.

The six algorithms used in the experiments are summ
rized in Table 2. The statistical analysis4 compares the three
heuristics with each other both with and without PEX-edg
finding. We evaluate the use of PEX-edge-finding in thre
conditions corresponding to each of the heuristics. Ea
algorithm is run until it finds a solution or until a 20 minute
CPU time limit has been reached in which case failure
reported. The machine used is a Sun UltraSparc-IIi, 2
Mhz, 128 M memory, running SunOS 5.6.

Experiment 1: Varying the Number of Alternatives
We constructed four problem sets with a varying maximu
number of alternatives in each process plan. Each probl
begins with an underlying 10✕10 job shop problem. For a
problem with a maximum ofM alternatives per process
plan, we generate 10M jobs. These jobs are then trans
formed into 10 process plans with alternatives. For each j
we randomly choose the number of alternatives,k, uni-
formly from [0, M]. We then combine randomly chosen
portions of the nextk jobs with our original job to produce a
single process plan withk alternatives. The combination
process randomly chooses the to-be-combined portion a
the location in the original process plan where the altern
tive is inserted. Each path between a pair of XorNodes re
resenting an alternative must have the same number
activities and that number must be greater than 1.

Sets of problems with a maximum of 1, 3, 5, and 7 alte
natives per process plan were generated. Each set cont

3. See (Davenport et al., 1999) for an application of PEX tech-
niques to pure alternative resource problems.
4. We measure statistical significance with the bootstrap paired
test (Cohen, 1995) withp ≤ 0.0001 (unless otherwise noted).

Algorithm Heuristic Propagators Retraction
Technique

SumHeight-
PropPEX

SumHeight-
PEX All a

a. Temporal propagation, PEX edge-finding exclusion,
PEX edge-finding not-first/not-last, and CBA.

Chronological
Backtracking

SumHeight-
PEX

SumHeight-
PEX

Non-PEX
Propagatorsb

b. Temporal propagation, edge-finding exclusion, edge-
finding not-first/not-last, and CBA.

Chronological
Backtracking

CBASlack-
PropPEX

CBASlack-
PEX All Chronological

Backtracking

CBASlack-
PEX

CBASlack-
PEX

Non-PEX
Propagators

Chronological
Backtracking

LJRand-
PropPEX LJRandPEX All Chronological

Backtracking

LJRandPEX LJRandPEX Non-PEX
Propagators

Chronological
Backtracking

Table 2: The Six Algorithms Used in the Experiments.
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120 problems. The problem generation method results in
problems such that a solution has exactly the same number
of executing activities as the underlying job shop problem.
Prior to scheduling, however, each problem has a different
number of activities depending on the random generation.
Table 3 shows the characteristics of the problem sets.

The proportion of the problems for which each algorithm
times out is shown in Figure 3 while the mean CPU time for
each algorithm is displayed in Figure 4. Statistical analysis
of the number of timed-out problems indicates that there is
no significant difference between SumHeightPEX and
CBASlackPEX regardless of the use of PEX-edge-finding.

SumHeightPEX and CBASlackPEX significantly outpe
form LJRandPEX in both propagation conditions. In term
of the usefulness of PEX-edge-finding, SumHeigh
PropPEX and LJRandPropPEX time-out on significant
fewer problems than SumHeightPEX and LJRandPE
respectively. There is no significant difference in perfo
mance between CBASlackPEX and CBASlackPropPEX.

Turning to mean CPU time, SumHeightPropPEX us
significantly less mean CPU time than CBASlackPropPE
which in turn uses significantly less than LJRandPropPE
When PEX-edge-finding is not used, there is no differen
between CBASlackPEX and SumHeightPEX while bo
are significantly better than LJRandPEX. Holding the he
ristic component constant, we see that SumHeightPropP
and LJRandPropPEX both incur a lower mean CPU tim
than their corresponding non-PEX-edge-finding algorithm
while there is no such difference for CBASlackPEX.

Other search statistics indicate that SumHeightPropP
makes significantly fewer backtracks, commitments, a
heuristic commitments than CBASlackPropPEX whic
makes significantly fewer backtracks, commitments, a
heuristic commitments than LJRandPropPEX. Both Sum
HeightPEX and CBASlackPEX make significantly fewe
backtracks, commitments, and heuristic commitments th
LJRandPEX. The only significant difference between Sum
HeightPEX and CBASlackPEX is that the former make
fewer commitments (p ≤ 0.005). With each heuristic, the
use of PEX-edge-finding results in significantly fewe
backtracks and heuristic commitments (p ≤ 0.005 when
CBASlackPEX is the heuristic). In terms of total commit
ments, LJRandPropPEX is not significantly different from
LJRandPEX, while the difference is significant for the othe
two heuristic commitment techniques (p ≤ 0.005 for
CBASlackPropPEX versus CBASlackPEX).

Experiment 2: Adding Alternative Resources
The problems in this experiment are transformations
those in Experiment 1. Alternative resources are added
each activity by randomly generating the total number
resource alternatives following the distribution shown
Table 4. The original resource requirement and duration a
preserved in the new problem. In addition, the new resou
alternatives (if any) are randomly chosen with uniform
probability from among the other resources in the proble
The duration of the activity on each new alternativ

Problem Set
(Maximum Number

of Alternatives)

Activities Per Problem

Min Mean Max

1 116 131.6 156

3 142 171.8 200

5 172 204.7 251

7 167 224.2 280

Table 3: The Characteristics of the Problems in Experiment 1.
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Alternative Resources per
Activity Probability

1 0.03125

2 0.5

3 0.25

4 0.125

5 0.0625

6 0.03125

Table 4: The Distribution of Alternative Resources for the
Problems in Experiment 2.
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resource is generated by multiplying the activity’s original
duration by a randomly chosen factor in the domain
[1.0, 1.5] and then rounding to the nearest integer value.
These transformations result in problems that have widely
varying PEX values: theoretically, from less than 2-8 to 1.
Such a range should favor heuristics that reason explicitly
about the PEX value (i.e., SumHeightPEX).

The portion of problems in each set that each algorithm
timed-out on is displayed in Figure 5. These results indi-
cate, regardless of the use of PEX-edge-finding, that Sum-
HeightPEX outperforms LJRandPEX which outperforms
CBASlackPEX. Each heuristic times-out on significantly
fewer problems when using PEX-edge-finding than without
it. The mean CPU times are displayed in Figure 6. These
results are consistent with the time-out results.

All the other search statistics which were evaluated
(number of backtracks, number of commitments, and num-
ber of heuristic commitments) agree in the relative ranking
of the performance of each heuristic: regardless of the PEX-
edge-finding condition, SumHeightPEX outperforms
LJRandPEX which outperforms CBASlackPEX. All heu-
ristics exhibited significantly fewer backtracks and heuristic

commitments when used with PEX-edge-finding. Bo
CBASlackPEX and LJRandPEX made significantly mo
overall commitments when using PEX-edge-finding.

Discussion
The experiments present interesting and conflicting resu
While SumHeightPEX outperforms CBASlackPEX with
PEX-edge-finding, their relative performance without PEX
edge-finding is inconsistent: little difference is observed
Experiment 1, while, in Experiment 2, SumHeightPEX i
significantly better. Furthermore, LJRandPEX is outpe
formed by both of the other heuristics (regardless of the u
of PEX-edge-finding) in Experiment 1, but outperform
CBASlackPEX (again regardless of the use of PEX-edg
finding) in Experiment 2.

One explanation for the dramatic difference in the quali
of heuristics between the two experiments is the fact th
the non-uniformity in PEX values is much greater in th
second experiment. SumHeightPEX exploits the non-u
formities among PEX values and so is able to perform b
ter. Another, compatible, explanation for the difference
that the PEX values may be particularly damaging to t
ability of CBASlackPEX to identify critical activity pairs.
Recall that in the original CBASlack heuristic, the mos
critical activity pair is one that is not already sequenced (
the CBA propagator or previous heuristic commitment
and that has the smallest biased-slack. Because the C
propagator cannot be used when one or both members o
activity pair have a PEX value of less than 1 (Beck, 1999
the CBASlackPEX heuristic calculates the biased-slack
such activity pairs even if their time windows do not ove
lap. Although activities with non-overlapping time win-
dows do not compete with each other for a resource, th
biased-slack calculation will tend to be very low
CBASlackPEX, therefore, may focus on such an activi
pair even though it is not in any way critical. We hypothe
size that such behavior is occurring, and at least contrib
ing to the poor performance of CBASlackPEX. Furthe
research is needed to confirm this behavior and, perha
modify CBASlackPEX to avoid it.

Through almost all experiments, PEX-edge-finding wa
shown to be beneficial to the overall problem solving ab
ity. The only exception is when the CBASlackPEX heuris
tic is used. In general, these results are as expected. G
the significant increase in the performance of scheduli
algorithms with the use of edge-finding propagato
(Nuijten, 1994), we expect that some gain is likely with th
PEX-edge-finding variation. Our intuitions as to why PEX
edge-finding improves search performance rests on t
impacts of propagation. First, propagation techniqu
reduce the search space by removing alternatives that wo
otherwise have to be searched through. Second, propaga
improve the search information upon which heuristics a
based. PEX-edge-finding improves both the informatio
represented in the PEX values and the information rep
sented in the time windows of activities. SumHeightPE
benefits from both improvements while CBASlackPEX
does not make direct use of the PEX values in forming

0

0.2

0.4

0.6

0.8

1

1 2 3 4 5 6 7

F
ra

ct
io

n 
of

 P
ro

bl
em

s 
T

im
ed

-o
ut

Maximum # of Alternatives per Process Plan

LJRandPEX
LJRandPropPEX

CBASlackPEX
CBASlackPropPEX

SumHeightPEX
SumHeightPropPEX

Figure 5. The Fraction of Problems in Each Problem Set for
which Each Algorithm Timed-out.

0

200

400

600

800

1000

1200

1 2 3 4 5 6 7

M
ea

n 
C

P
U

 (
se

cs
)

Maximum # of Alternatives per Process Plan

LJRandPEX
LJRandPropPEX

CBASlackPEX
CBASlackPropPEX

SumHeightPEX
SumHeightPropPEX

Figure 6. The Mean CPU Time in Seconds for Each
Problem Set.



o,

-
er.

for
In
er

int
g.
d

ic

.
ling

.
In

ng

nt

nd

n
nd
ry,
ty

m
n

f

h,

to
. In
ng
s

to

o

en

A

for
commitments and so does not benefit from this extra infor-
mation. Another explanation for the CBASlackPEX result
with PEX-edge-finding is that CBASlackPEX commit-
ments tend to result in less propagation (Beck et al., 1997a;
Beck, 1999). In Experiment 1, for example, SumHeight-
PropPEX makes a significantly smaller percentage of heu-
ristic commitments than CBASlackPropPEX. While a
CBASlackPEX algorithm using PEX-edge-finding incurs
the computational cost, the benefits are not apparent.

In this paper, we have not investigated the scaling behav-
ior of our representation of alternative activities. While
experiments elsewhere (Beck, 1999) indicate that the supe-
riority of SumHeightPEX and PEX-edge-finding tech-
niques continues with larger problems (e.g., alternative
process plan problems up to 20✕20), the requirement to
represent multiple alternatives necessarily leads to poor
scaling behavior. This is empirically observed in (Davenport
et al., 1999). The trade-off, of course, is that it is the repre-
sentation and exploitation of the PEX information that
results in both the higher quality commitments and the poor
scaling behavior. Characterization of this trade-off and
effort to optimize it form a central theme of our future
research plans.

Conclusion
In this paper, we introduced the probability of existence
(PEX) of an activity and used it to represent that an activity
in the original problem definition does not necessarily have
to execute in a solution. The use of PEX required exten-
sions to the constraint representation of activities and of the
temporal network, including algorithms for the propagation
of PEX values among related activities and modifications to
the temporal propagation. Heuristic commitment tech-
niques and two edge-finding propagators were also
extended to account for PEX values.

Experimental results indicate that incorporating PEX val-
ues into the texture-based heuristics results in significantly
higher quality commitments and better overall search per-
formance. Performance differences are especially large
when there is a wide range of PEX values in a problem.
Experimental results also validate the use of PEX-edge-
finding which, in most cases, leads to significantly better
overall search performance.

A key contribution of this work is the applicability of our
representation of alternative activities to a wide variety of
real-world scheduling problems. More generally, we have
introduced a mechanism to explicitly reason about choosing
not to take certain actions in order to achieve an overall
goal. Such reasoning has relevance in many areas of artifi-
cial intelligence. Future research will investigate such
applications.
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