Proceedings of the Tenth Symposium on Abstraction, Reformulation, and Approximation

Instance-Specific Remodelling of Planning Domains
by Adding Macros and Removing Operators

Maher Alhossaini
Department of Computer Science
University of Toronto
maher @cs.toronto.edu

Abstract

We propose an approach to remodelling classical planning
domains via the addition of macro operators and removal
of original operators either for the domain as a whole or
instance-by-instance. For the latter remodelling, we train a
predictor to choose the best reformulation of the domain
based on instance characteristic. In the domain level remod-
elling, we try find a fixed remodelling that works best on av-
erage over our training set. Operator removal does not gen-
erally preserve solubility and proving solubility preservation
of domain models is PSPACE-complete. So we use an ap-
proach that uses training instances to empirically estimate the
probability of solubility preservation and maintains a mini-
mum value of that probability on the training instances. We
show that the instance-specific approach outperforms the tra-
ditional best-on-average macro-only remodelling approach in
9 out of 14 cases of domain/macro-source combinations, and
that it can outperform fixed domain-based models generated
with existing macro learning tools.

Introduction

A central idea in knowledge-based problem solving (Simon
1973) is the interleaving of searching for a solution within
a particular problem model and changing that model via re-
modelling. Simon proposes a remodelling component based
on a retrieval system that modifies the problem model us-
ing previous knowledge and generates new modelling alter-
natives based on features of the current problem model and
state of the search. Much of automated planning has focused
only on search in a fixed model. Here, we focus on the re-
modelling aspect. While we do not remodel the problem dur-
ing search, as proposed by Simon, we use a learned predictor
to add macro operators and remove original domain opera-
tors before search on a given instance or domain.

Our experimental results using a state-of-the-art STRIPS
planner across 14 domain/macro-source combinations indi-
cate that our instance- and domain-level remodelling tech-
niques both significantly out-perform an existing macro-
only learning approach as well as an exhaustive best-on-
average macro-only approach.

Macros are sequences of operators that act as a single op-
erator in a planning domain. Traditionally, they are added

Copyright (© 2013, Association for the Advancement of Artificial
Intelligence (www.aaai.org). All rights reserved.

16

J. Christopher Beck

Department of Mechanical

and Industrial Engineering
University of Toronto
jcb@mie.utoronto.ca

to the domain as basic operators to improve the perfor-
mance since they act as shortcuts to deeper states in the
search. Based on an input set of macros and a set of learning
instances, we use machine learning techniques, offline, to
learn a predictor that specifies the subset of macros and orig-
inal domain operators that should make up the domain oper-
ators for a given problem domain or instance. For domain-
level remodelling, the proposed set is the “best on average”
over the learning instances. Online, we simply replace the
original domain with the proposed set. For instance-specific
modelling, offline we find the best remodelled domain for
each instance and use the features of each problem instance
and its corresponding best domain as input to a machine
learning technique. We, thereby, learn a predictor that maps
problem instance features to remodelled domains. Online,
we measure the features of a new instance and use the pre-
dictor to identify the domain to use for the instance.

As we are removing operators, the solubility preserva-
tion of the remodelled domain is not guaranteed: there may
be no valid plan in the remodelled domain while there was
one in the original domain. However, deciding whether an
operator is necessary to solve a problem instance, in gen-
eral, is PSPACE-complete (Ferrara, Liberatore, and Schaerf
2005). To tackle this issue, we limit operator removals dur-
ing training to maintain a minimum level of expected solu-
bility preservation for each accepted domain model: if the
domain model fails to solve a given proportion of the solv-
able training instances, we discard it. We discuss solubility
preservation in more depth below.

Background

Representing a problem is important for solving it. One
well-known representation language for classical planning
is STRIPS (Fikes and Nilsson 1971). Conventionally, a
STRIPS planning problem is represented by a planning do-
main and a planning instance from that domain. The plan-
ning domain contains a description the environment: the
predicates that describe a state and the operators that are
used to transition between states. The planning instance is
a description of a particular problem: it describes the facts
in the initial state and the goal. The purpose of planning is
to find a plan, composed of instantiated operators, that leads
us from the initial state to the goal.

More formally, a planning problem is a tuple P = (D, 1),

where D is the domain and i is the problem instance (Ghal-
lab, Nau, and Traverso 2004). Often, the same domain is
used with different problem instances. The domain D is a
set of predicates W, and a set of operators O: D = (¥, O).
A predicate is a relation with a sequence of arguments. A
predicate p € W can be grounded (or instantiated) into an
atom, o, using a substitution, 6, that replaces all of its vari-
able arguments by constants: 6(p) = «. The substitution
can also be applied to a set of predicates to produce a set of
atoms. An operator o € O is a tuple: 0 = (pre,, add,, del,),
where pre, is the precondition predicates set, add, is the
add predicates, and del,, is the delete predicates. An action,
a = (preq,add,,del,), is an instantiation to an operator
o with a substitution 6,. So, pre, = 0,(pre,), add, =
0.(add,) and del, = 0,(del,). A state is a set of atoms
that are considered true in the state. The atoms that are not
in a state are assumed to be false. An action a is applicable
in a state s if pre, € s, and the resulting state from applying
a to s is obtained by the function: a(s) = s\ del, |J add,.
The problem instance i is a pair: i = (sg, g), where sq is the
initial state, and g is the goal partial state. A goal state for ¢
is one that is a superset of g. A plan is a sequence of actions.
To solve 1, a plan 7 must transform sg to a goal state. Such
plan is called a solution plan to i.

One common approach to domain remodelling is to add
macro operators. A macro operator is a sequence of opera-
tors that act as single operator. A sound macro is one whose
application in a state is always equivalent to the ordered ap-
plication of its constituent operators. Tools such as Wizard
(Newton 2008) and Macro-FF (Botea et al. 2005) acquire
macro operators and add them to the domain as new nor-
mal operator, solving all subsequent problem instances with
the augmented domain. This is a domain-level remodelling.
Macros have also been used in different contexts. For ex-
ample, the Marvin planner (Coles and Smith 2004), a mod-
ified version of the FF planner, learns macros during the
local search phase and uses them in later stages to escape
plateaux.

Another remodelling approach is to remove irrelevant op-
erators or actions as they can increase the number of states
explored. Even planners with the ability to detect irrelevant
actions can sometimes fail to find them, and therefore a spe-
cialized tool that detects and removes these operators can
be useful (Nebel, Dimopoulos, and Koehler 1997). Haslum
and Jonsson, for example, identified and removed actions
that can be replaced by other actions in the plan (Haslum
and Jonsson 2000). In a preprocessing step, they prove that
an action is subsumed by a sequence of actions that do not
contain it, and then they remove the action. This method is
solubility-preserving, but it sometimes requires a lot of time
for the preprocessing.

While macros work as shortcuts in the search space, they
increase the branching factor and potentially make some op-
erators redundant. Removing the redundant or irrelevant op-
erators, in contrast, decreases the branching factor but it is
difficult to find operators that are safe for removal for all
instances in a domain. Therefore, we believe the combina-
tion of macro addition and operator removal in an instance-
specific context is a valuable direction for investigation.

17

One of the few papers that combines macro addition with
the operator/action removal is (Chrpa 2010). Macros are ex-
tracted based on action dependencies and added to the do-
main. Then some actions are removed by modifying their
corresponding operators so that they can only be instanti-
ated under restricted conditions. Operators whose ground
actions have preconditions (effects) that appear only in the
initial state (goal) of training instances plans are replaced
by copies that are only applicable in the initial state (goal).
This method can reduce the branching factor, speeding up
planning, but it is not clear whether such operators appear
frequently in the planning domains.

We were inspired partially by the large algorithm config-
uration literature such as ParamILS (Hutter et al. 2009) and,
in fact, in a previous work, we used a similar approach to
perform an instance-specific macro-based remodelling (Al-
hossaini and Beck 2012). In (Alhossaini and Beck 2012) we
present a method for instance-specific domain remodelling
where the domain is remodelled after observing, online, the
instance to be solved. The approach uses a combination of
offline parameter optimization and machine learning. It was
found that the potential of improving planning speed us-
ing such context significantly exceeds that using domain-
level remodelling. The instance-specific approach appears
particularly appropriate for operator removal as the charac-
teristics of a given problem instance may result in unneces-
sary operators (e.g., the fuel operator, ‘donate’, in mprime
domain instances where there is plenty of fuel). When we
add macros, more operators may become removable in the
instance-specific context.

The use of machine learning to choose a solving technique
is not new in planning. For example, it was used to train
a predictor to chooses the best heuristic during the search
(Domshlak, Karpas, and Markovitch 2010), and was used to
generate rules to choose the best configuration of a planner
(Vrakas et al. 2003).

Definitions

Given a planning domain and a set of sound macro opera-
tors, one can make a new domain model by adding macros
and removing operators. However, remodelling the domain
this way can make solvable problem instances unsolvable if
operators necessary to reach the goal are removed.

There appears to be no agreement in the literature on a
term that describes the ability of a domain model (or gen-
erally, a reduction) to preserve the solubility of instances in
planning domains. For example, Chen and Yao used the term
‘completeness-preserving’ to describe their state-space re-
duction in planning (Chen and Yao 2009). Nebel, Dimopou-
los, and Koehler used the term ‘solution-preserving’ to re-
fer to the same property (Nebel, Dimopoulos, and Koehler
1997). Others like Chrpa’s did not use a specific term for
the property (Chrpa 2010). We choose the term solubility-
preserving, as we think it is easier to understand and more
accurate. We use the term to describe the property of a do-
main model on single instance. To describe the property for
a reformulation to be solubility-preserving on a randomly
chosen instance, we use another term: coverage.

Online

Original Offline
Domain Operator

Selector

Operators
to remove,

Problem
Instance

Planner

Modified
Domain

Learning
Tool

Predictor

A 4

Figure 1: The system framework, with macro addition and
operator removal.

A problem instance, i, is solvable in the domain model d
if there exists is a plan constructed from the operators of d
that is a solution to 7. Determining whether a domain model
solves an instance is PSPACE-Complete (Erol, Nau, and
Subrahmanian 1992). We say that d is solubility-preserving
for instance ¢ if whenever ¢ is solvable in the original do-
main D, it is solvable in d. Formally, a binary function
sp(i,d) = 1if d is solubility-preserving for ¢, and sp(i, d) =
0 otherwise. An example of a solubility-preserving domain
model is the original domain augmented with a sound set of
macro operators. An example of a domain model that is not
solubility-preserving for a non-trivial instance is the domain
with no operators. The coverage ratio of a domain model d,
~4, 18 the probability that d is solubility-preserving for an
instance ¢ picked at random from the intended distribution.
In general, it is hard to find the coverage though it can be
estimated empirically given a set of problem instances.

Approach

Our approach aims to learn to remodel planning domains
by adding macros and removing basic operators while main-
taining a probability of solubility-preservation of the learned
domain models in an instance-specific context and in a
domain-level context.

Figure 1 presents a schematic diagram of the system.
Given an original STRIPS (Fikes and Nilsson 1971) domain
and a set of candidate macro operators, offline we enumer-
ate all subsets of macros and selected original operators from
the domain, discarding obviously non-solubility-preserving
sets such as the empty set. We construct a new domain model
with the new set of operators. Given a number of training
instances, we evaluate each domain model by running the
planner on all instances with the model and registering the
results and the run-time. In this way we (1) search for the do-
main model that most improves the speed of the planner for
each instance and (2) estimate the probability of solubility
preservation of each domain model. Finally, we use a learn-
ing tool to construct a prediction model to choose, based on
the features of a problem instance, the best domain model
for an instance.

Online, the predictor is consulted: based on the incoming
problem instance’s features, it suggests a domain model to
be used to solve the instance. This approach is applicable to
any planner and domain, although a separate predictor must
be learned for every planner-domain pair.

18

Approximating Coverage

While it is hard to prove solubility preservation of the do-
main models, it is important to maintain an acceptable level
of empirical coverage, given that the system will be applied
to new instances. To measure coverage of a domain model

d, we define v/ to be the ratio of the number of training in-
stances [that d solved to the total number of solvable train-
ing instances. We maintain a lower bound on the coverage
with a minimum coverage ratio constant .

The coverage ratio term defined in previous section can-
not be used directly in here for two reasons: it requires
sampling to be measured, and it is unclear how to mea-
sure it under the use of timeouts. We can approximate the
coverage ratio y4 for a domain model d by sampling in-
stances from the intended distribution, represented by the
set of training instances, and finding whether d is solubility-
preserving on these instances. However, this requires know-
ing whether each sampled instance is solvable or not, which
is a PSPACE-complete problem. Therefore, we must ap-
proximate 7y, by taking the timeout of the planner into ac-
count while sampling.

We say that an instance ¢ is c-solvable in a domain model
d by planner P if running P with ¢ and d returns a valid so-
lution plan to ¢ within time c. If P halts normally and returns
no plan within time ¢, then i is not c-solvable by d on P.

A domain model d, which is constructed by adding
macros from a set of sound macros S, and removing orig-
inal operators from the original domain D, is c-solubility-
preserving for ¢ if whenever the planner P returns a plan for
i using some domain model d’, constructed from D and S,
within time ¢, we find that running P with d and ¢ also re-
turns a solution plan within time c. We define a new function
c-sp as follows:

N | if d is c-solubility-preserving for i.
c-sp(Py4,d) = { 0 if d is not c-solubility-preserving.

The coverage ratio is the expected value of the sp func-
tion, which indicates whether a domain model is solubility
preserving for an instance. To approximate 4, we sample
a set of instances I from the intended distribution Distp
and find the number instances on which d is solubility-
preserving. However, it may be impossible to tell whether
d is solubility-preserving on some instances. For example,
instances on which all domain models timeout cannot be
used in this calculation, since their c-solubility-preserving
status, the practical form of solubility-preserving, is unde-
fined. Therefore, we filter the sampled instances to include
only those for which we surely know that d’s c-solubility-
preserving value is defined. We do that by introducing a sub-
set we call the accepted sampling subset of /.

The Accepted Sampling Subset I} of I with respect to d
is the set of instances ¢ € I for which the c-sp(P,,d) is
defined. The value of c-sp is defined only when d did not
timeout on the instance, and either there is a domain model
that c-solves the instance or a macro-only domain model did
not timeout on the instance.

The c-coverage ratio, ﬁé , of d using [is the proportion
of instances from the accepted sampling subset of I, I, on

which d is c-solubility-preserving to the total instances of
1;. More formally:

Eie]; [C'Sp(Pv iv d)]
21612 c-sp(P,i,d)
A

~T
Vd

For example, when d is the original domain augmented with
macros, we know that % = 1 if d can c-solve one in-
stance of I. Notice that 5/ is not defined if |I| = 0. This
can happen when all macro-addition domain models time-
out and none of the other domain models returns a solution
plan within time c. In this case, there is no domain model
that can be used to know whether the instance is really un-
solvable, since domain models that remove operators are not
solubility-preserving in general.

Macro Source

Any source of macros can produce candidate macros. In our
experiments, we use three sources: the chunking phase of
Wizard (Newton 2008), the CA-ED version of Macro-FF
(Botea et al. 2005), and manually constructed macros. We
discuss these sources in detail in the Experiments section.

Training

Given a STRIPS domain D with a set of operators O, a set
of macro operators .S, a planner P, a set of training instances
Ityqin, and the minimum coverage ratio constant, -y, the of-
fline training phase works as follows:

1. We run the operator selector to choose the operators to
be removed. If we know that the removal of an individ-
ual operator o will increase the number of unsolvable in-
stances above the acceptable level specified by ~, we do
not choose it. This step is analogous to the step in which
a macro operator tool filters out the less useful individ-
ual macros. The operator selector performs the following
steps:

(a) Given a set of small problem instances [;.;, the planner
is run on each instance in [g,; with two models: the
domain that contains all initial macro operators .S and
original operators, d;;, and the model, d,,, which is the
original domain augmented with the initial macros S,
but with one basic operator o removed.

(b) We calculate d,,’s average c-coverage ratio %zel , which
is the proportion of instances solved correctly without
o divided by the total number of correctly solved in-
stances. We know the correctness of the planner results
under d, by comparing it to the planner results under
d a1, which is solubility-preserving.

Here, we have two models to look at: d,;; and d,. By
looking at the solubility of the instances of I}, using
both d,;; and d,, we can identify the accepted sampling
instances I, with respect to d,, as described in the pre-
vious subsection. So:
Ao Zierr, csp(Piiydo)
Yo, T LT
sampling subset with respect to d,.

, where [*

+.1 1s the accepted

(©

If %Zc’ < 7, we must not choose operator o for re-
moval, since we know that any domain model that

19

does not contain that operator is likely to be solubility-
preserving only on a proportion of instances less than
v. If ﬁjzel > 7, then we can add o to the set of remov-
able operators () that is initially empty.

We repeat the steps (a),(b) and (c) for all domain opera-
tors, or until |Q| = ¢, where ¢ is a constant correspond-
ing to the maximum number of operators we allow to
be removed. To break ties as a result of ¢, since more
than ¢ operators may be removable, we add to @) the
operators o whose corresponding domain models, d,,
have the smallest average run-time on the instances of
I sel-

2. We generate all possible domain models that result from
adding macros and/or removing operators in ().

(d)

3. We exhaustively run all training instances Iy,4;, on these
domain models and register the results.

4. We accept only domain models that solve at least a pro-
portion «y of the training instances correctly, and we dis-
card the other domain models. So:

accept = {dﬁé”‘“‘" >~}

We know that some domain models should be accepted
unless all instances time out. For example, the original
domain model D (with no macros added or operators re-
moved) should be accepted because ﬁg“”'" =1, and all
domain models that only add macros should be accepted.

5. Finally, we use the run-times of the accepted domain
models to train the Direct predictor as in (Alhossaini
and Beck 2012). The Direct predictor is built by train-
ing a classification model. We associate the problem in-
stance’s feature with the accepted domain model that has
the smallest run-time on that instance. Then, (features,
domain model) pairs are passed to a classification-based
learner to produce the predictor. This predictor directly
predicts the appropriate domain model for a problem in-
stance based on the given problem instance’s features. As
the number of domains to choose from is O(2(Q1+15D),
we restrict the classification to the top » domain models
whose removal has the largest effect on the run-time of
the best achievable instance-specific predictor based on
the training instance.

Features and Learning

To identify features, we used a modified version of an ex-
isting feature selection algorithm (Yoon, Fern, and Givan
2008). The algorithm is based on finding features of the
problem instance from classes defined using a taxonomic
syntax language. A taxonomic syntax language represents
general features for arbitrary planning domains and problem
instances. The classes correspond to sets of objects that fill
particular roles in domain predicates. In our feature selection
algorithm, the classes are constructed beginning from level
0, where basic concept classes, such are the ‘type’ class in
STRIPS language, are built. Classes at subsequent levels are
recursively constructed from classes at previous levels using
language connectors, including class intersection and com-
plement. The features are the number of objects that belong

to each class. We select the features that have the highest
coefficient of determination, R?, value with respect to the
run-time of some selected domain model. In statistics, the
R2-value provides a measure of how well the observed out-
comes can be predicted by the prediction model (Steel and
Torrie 1960). To make the process manageable, we measure
R2-value on domain models where either at most one macro
is added to the original domain or at most one operator is
removed from the macros-augmented domain. For more de-
tails, please see (Alhossaini 2013)

In addition to the taxonomic syntax language features, we
also use two simple kinds of features: the number of initial
state and goal facts, and some manually extracted, domain-
dependent features, only in one domain (freecell). Again,
please see (Alhossaini 2013) for complete details.

For learning, we use a non-linear classification algorithm:
SVM-SMO (Platt 1999) with quadratic kernel to train the
Direct predictor.

Experiments

In this section, we assess the performance of our approaches
against existing macro learning tools as well as against other
reasonable or perfect knowledge approaches.

Settings

The experiment was conducted in a 30-node cluster, where
each node consists of two Dual Core AMD 270 CPUs, 4
GB of main memory, and 80 GB of disk space. We used the
Ruby scripting language to write the code. We registered the
average run-time of the FF planner (Hoffmann and Nebel
2001) in three experiments, each using a different source of
macros (see below). We limit the size of the initial macro set
to 5 and set vy = 0.98 and ¢ = 3.

Macro sources

We split our experiments over three different macro sources,
using one source for each experiment. We use Wizard’s
chunking phase (Newton 2008; Newton et al. 2008), Macro-
FF’s CA-ED version (Botea et al. 2005), and some manually
constructed macros.

We used the version of Wizard that was used in the IPC.
To get the initial set of macros, we ran the chunking phase
of Wizard only to get a set of individually useful macros. We
compare Wizard’s performance to our predictors by running
Wizard’s bunching phase using the resulting macros to find
a useful subset of these macros. As parameters to the genetic
algorithm, we used five epochs, and a population of size 9.
We changed the default macro utility threshold in some do-
mains to get macros in all domains

We used the CA-ED version of Macro-FF. CA-ED is a
system that extracts macro operators, adds them to the do-
main, and uses the new domain with the FF planner to solve
future instances.

Planning Domains

We used six benchmark domains from the International
Planning Competition (IPC). We chose the domains from a

20

spectrum of domains described in (Hoffmann 2001). The do-
mains are chosen to include those with plateaux (logistics),
local minima (blocksworld), and dead-ends (pipesworld,
mystery, mprime, and freecell). We did not run all macro
sources on all domains, since some domains did not work
with the macro source.

Problem Instances

All problem instances were generated using a problem gen-
erator as we needed a large number of instances for the train-
ing.! The parameters used to generate the new problems of
each domain are shown in Table 1. Details of the parameter
meanings can be found in the corresponding generators.

Domain parameters
logistics a€[1,3],c€[4,6],s € [4,6],p € [50, 62]
blocksworld n € [2,50]

pipesworld-nt | p € [2,4],b € [3,5],9 € [1,2]
I € [5,5], f € [30,30],s € [1,2],v € [1,2],c € [5,8]
1€ 5,5, f €[30,30],s € [1,2],v € [1,2], ¢ € [5,8]

fE 4,4, ce[8,8],s€ [4,4],1 € [13,13]

mprime

mystery

freecell

Table 1: The parameters for the training and test instances.

Note that the parameters used to generate the instances
for all domains in the different experiments (FF-WIZARD,
FF-MACROFF, and FF-MANUAL) are different. So, for ex-
ample, the blocksworld domain training and test instances
have different sizes for each experiment. The reason of such
difference is that the macros used in each experiment have
different performance using FF. If we use the same set of
parameters in all experiments we may find that the instances
either timeout or are solved very quickly in some experi-
ments, which makes the comparison harder. We chose the
parameters that generate random hard instances, but not so
hard that no instance can be solved.

Selected Removable Operators

Using the operator selector described earlier, the removable
operators are described in Table 2.

Timeout Handling

In every run of a problem instance, we set the cut-off time to
one hour. The run-time of timed out instances is registered
one hour and the test instance for which all domain models
timed out is not considered for the evaluation, since it does
not differentiate among the domain models.

Models to Compare

We compare the mean run-time of seven common domain
models and domain model predictors:

ORIG is the original unmodified domain.

BOA-M is the best accepted domain model on average on
the training instances when allowing only macro addition.

'All generators were from http://www.loria.fr/~hoffmanj/ff-
domains.html, except for pipesworld, which is available at
http://www.cs.toronto.edu/~maher/ pipesworld_nt_gen/.

Domain [Selected Operators (Q)
FF-WIZARD

{load-truck, unload-truck, unload-airplane }

logistics

blocksworld {pickup, stack, unstack }

pipesworld-nt | {}

mystery-5 {}

freecell {sendtofree, sendtofree-b, newcolfromfreecell }
FF-MACROFF

{pickup, stack, unstack }

blocksworld
pipesworld-nt

{push-start, push-end }
{sendtohome}
FF-MANUAL
{load-truck, unload-truck, unload-airplane }

freecell

logistics
blocksworld

pipesworld-nt

{pickup, putdown, unstack }

{push-start, pop-start, pop-end }

mprime-5 {move, donate }

mystery-5 {move, load, unload}

freecell

{sendtofree, sendtofree-b, colfromfreecell }

Table 2: The operators selected for potential removal.

BOA is the best accepted domain model on average on the
training instances with both macro addition and operator
removal.

DIR is the direct predictor using exhaustive evaluation of
all accepted domain models on the training instances. We
set 7 = 16. The time required to measure the problem
instance features and to consult the predictor is negligible
and so not included in DIR’s mean run-time.

PEREF is the imaginary perfect predictor that knows in ad-
vance the best accepted domain model for every fest in-
stance. It is based on an exhaustive evaluation of all do-
main models on the test instances.

WIZ and MFF are the macro-only domain models chosen,
respectively, by Wizard and Macro-FF.

Results

We used paired ¢-test (Cohen 1995) with p < 0.05 to test
for statistical significance. Table 3 shows that the perfor-
mance of the Direct predictor is significantly better than
that of the domain-level remodelling using macro addition
only (BOA-M) and using both macro addition and opera-
tor removal (BOA). In 9 out of 14 combinations, we found
DIR significantly faster than BOA-M, while not being sig-
nificantly slower in any case. Compared to BOA, DIR was
significantly faster in 5 out of 14 cases and was not signif-
icantly slower in any case. Compared to the existing macro
learning tools, the Direct predictor was never significantly
slower while significantly out-performing Wizard in 3 of 5
domains and Macro-FF in 2 of 3 domains.

The perfect predictor (PERF) was significantly faster than
all macro-only domain models, including BOA-M, WIZ,
and MFF, in all cases, and significantly faster than BOA in
13 out of 14 cases. The run-times of PERF represent an up-
per bound on performance that can be achieved in our ex-
periments. We observe that in while DIR is close in perfor-
mance to PERF for low run-time instances, there tends to be

21

a substantial separation on other instances. Narrowing this
performance gap is a key challenge for future work.

In terms of coverage, we found that DIR solved all of
the 3685 solvable test instances correctly, while BOA in-
correctly returned ‘no plan was found’ in 5 instances where
there existed a valid plan in the original domain. Both DIR
and BOA maintained a high c-coverage on the test instances.

Discussion

The results demonstrate that remodelling with macro addi-
tion and operator removal can achieve a significant planning
speed-up over macro-only remodelling methods and the
original domains. They also show that the instance-specific
remodelling can achieve a significant planning speed-up as
compared to domain-level remodelling. All these results are
achieved while maintaining high c-coverage ratios.

Feature Selection and Learning

The key aspect of learning instance specific macros is to find
arelation between instance features and macro performance.
While our results demonstrate that the learning was success-
ful in a number of cases, we would like to further understand
the nature of such relations embodied in the predictors.

In the FF-MANUAL/mprime combination, DIR chose
from only three sets of operators: O; = {move, load, unload,
load-move-unload, donate-move} , O = {move, load, un-
load, donate}, and O3 = {move, load, unload, donate, load-
move-unload}. We also found that DIR mainly used two fea-
tures to select from these operators: the capacity of the truck,
s, and the number of trucks, ¢.

In mprime, the macro 1oad-move—unload works very
well. Intuitively, it is a short-cut that moves a package
between locations in one step rather than three. How-
ever, when the truck can carry more than one package,
load-move—unload will tend to result in trucks travel-
ling partially empty and then returning to load the next pack-
age. Furthermore, the delete relaxation is less informative, as
the truck can be in both its original and new location simul-
taneously, meaning that the heuristic does not realize that the
return trip is necessary. Another macro, donate-move,
was also found to be useful. If there is no fuel in location
‘A’ for a truck at ‘A’ to move, the operator donate can
transfer a unit of fuel from a location ‘B’ to ‘A’. The macro
donate-move performs the donating and the moving in
one step. With only one truck, it is reasonable that the do-
nated fuel should often be used immediately to move the
truck. However, when more trucks are available, donated
fuel may be used by any truck in the future, which makes
forcing one truck to use it immediately less likely to be a
good idea.

Table 4 presents detailed results in the mprime domain.
The columns labelled “# best” show that the feature s is
highly correlated to the performance of macro sets contain-
ing the load-move—unload macro. When s = 2, using
the original domain, O, without load-move—-unload is
the best choice for 65% of the test instances. When s = 1,
including load-move-unload, O; or Os, is the best
choice for about 72% of the test instances. However, when

Domain I ORIG | BOA-M | WIZ/MFF | BOA | DIR | PERF
FF-WIZARD
Logistics (320) 12.44(0) | 10.17 (0) 12.66 (0) | T#9.35(0) #*+#8.89 (0) *+#6.63 (0)
Blocksworld (225) || 1270.86 (0) 0.52 (0) 97.82(0) | 1#0.05 (0) +#0.06 (0) +#0.04 (0)
Pipesworld-nt (213) || 163.51 (0) | 167.47 (0) | 152.79(0) | 167.47 (0) 177.82 (0) | *+#101.25 (0)
Mystery-5 (216) 155.64 (0) | 155.64 (0) | 143.98 (0) | 155.64 (0) 132.45 (0) | *T#20.26 (0)
Freecell-A (199) 513.21 (0) | 359.14 (0) | 568.37 (0) | #234.75(0) | *t#118.09 (0) | *T#10.03 (0)
FF-MACROFF
Blocksworld (250) 1267.8 (0) 2.02 (0) 3.04(0) [T#0.07 (0) #0.07 (0) *F7#0.04 (0)
Pipesworld-nt (289) || 255.29 (0) | 255.29 (0) | 296.34 (0) | 336.49 (0) 25529 (0) | *1t#10.32 (0)
Freecell-A (298) 477.01 (0) | 302.67 (0) | 302.67 (0) | 302.67 (0) | *T#206.69 (0) | *+#45.84 (0)
FF-MANUAL
Logistics (192) 3.70 (0) 3.70 (0) N/A 3.57 (0) #3.51 (0) *F3.13 (0)
Blocksworld (300) || 1055.03 (0) 3.52 (0) N/A +0.08 (0) #1+0.05 (0) #1+0.04 (0)
Pipesworld-nt (356) || 347.65 (0) | 244.90 (0) N/A | 244.90 (0) 316.12 (0) #+12.45 (0)
Mprime-5 (240) 590.38 (0) 7.28 (0) N/A 7.28 (0) #+2.12 (0) #1+0.23 (0)
Mystery-5 (287) 232.33(0) | 172.93 (0) N/A | 134.92 (4) +82.21 (0) #+1.31 (0)
Freecell-A (300) 438.25 (0) | 415.91 (0) N/A | T164.62 (1) +211.67 (0) #1+6.22 (0)

Table 3: Mean run-times in seconds followed by the number of incorrectly solved test instances (in parentheses) for the domain
models using FF and three macro sources. The number of tested instances is shown in parentheses with each domain’s name.
The asterisk (*), plus (+), and pound (#) mean that the model was significantly faster than BOA, BOA-M, and (WIZ or MFF),

respectively, with p < 0.05.

best # correct
operators set s=1 s—9 s=1 6 —
t=1]t=2 t=1]t=2
[oh) 13 10 3 13 0 0
0 0 7 78 0 0 78
Os 30 33 1 0 33 0
other sets 17 10 38 0 0 0

Table 4: Relation between the features (s and t), the operator sets, and the best possible choice of the DIR predictor in the
mprime domain. Columns 2—4 are the number of instances on which the corresponding operator set was best. Columns 5-7 are
the number of instances on which DIR correctly chose that corresponding best operator set.

s = 1 the feature ¢ is somewhat correlated to the choice
of O; and Os. When s = 1 and ¢t = 1, using the original
domain’s operators with the macro 1load-move-unload
(O1) is the best choice for 22% of the test instances. When
s = 1 and t = 2, using the original domain’s opera-
tors without donate and with 1load-move—unload and
donate-move (O3) is the best choice for 55% of the in-
stances. Given that finding a small number of features that
can cluster the test instances is hard, and that there are 16
sets to chose from, we may consider these features informa-
tive.

The columns labelled “# correct” show the number of in-
stances on which DIR found the best macro set choice. The
Direct predictor correctly detected the correlation between s
and the 1load-move—-unload macro. When s = 2 and O»
is the best set to choose, DIR was 100% correct in choosing
Os. When s = 1,t = 1 and Oq is the best set, and when
s = 1,t = 2 and O3 is the best, DIR was correct 100% of
the time in both cases. This result shows a high accuracy of
the predictor on the set Os. Although DIR was less accurate
when the best subset was O or Os, it was able to use the

22

less informative feature, ¢, to often predict the best sets.

The quality of the selected features and the high accu-
racy of DIR can explain why DIR outperforms BOA by at
least twofold. While the average run-times of domains con-
structed from the operators of Oy, O-, and O3 are 56.01,
590.38, and 107.97 seconds, respectively, BOA’s run-time
is 7.11 seconds and DIR’s run-time was 2.12 seconds. This
high performance of DIR is due to the results shown in Ta-
ble 4: (1) the feature selector found a useful features, and
(2) DIR used these features to make accurate predictions. In
summary, in 72.91% of the instances, O, O or O3 was the
perfect choice. From these instances, DIR correctly chose
the perfect set in 70.86% of the cases. In instances where
DIR did not choose the perfect set, it chose sets that are
strictly faster than BOA in 97.41% of the cases.

Solubility Preservation

While our approach does not guarantee a minimum cover-
age ratio, we are able to find empirically reliable remodelled
domains by accepting only those with average ratios > v in
training. The results show that the new domain models (e.g.,

BOA) have acceptable c-coverage ratios (> +) in all plan-
ning domains on the test instances. Empirically, the direct
predictor had a c-coverage ratios of 1 in all domains.

Faster Offline Evaluations

One drawback of the exhaustive evaluation approach is that
the number of domain models to evaluate is exponential
in the number of macros and operators. Even though the
evaluation is achieved offline, and hence the planner can
be run in parallel, it may take a long time, since there are
many domain models. The median total evaluation time for
all domains was 963.18 hours, while the minimum total
evaluation time was in the FF-MANUAL/logistics domain
with 22.09 hours and the maximum time was in the FF-
MANUAL/blocksworld domain with 5710.36 hours.

In this paper, we choose a constant number, ¢ = 3, of
operators to remove, while limiting the number of macros
to less than 6. Using such restrictions limits the number of
models, but may also limit the scalability of our approach
even if this computation is offline.

We believe that the parameter tuning approach to domain
remodelling (Alhossaini and Beck 2012) is a promising way
to address this issue. Recasting the domain model compo-
nents (the macros and the operators) as domain parameters
that can be optimized using a parameter tuner can make the
approach more practical.

Future Work

Although the feature selection method we used yields good
performance, we believe that more work should be done to
find a better feature selector. Too many generic features are
generated; the features need to be more correlated to the
models performance, and their number should to be reduced.
Finding useful features automatically for every domain is
challenging, because there are many possible features and
different domain models, even though we can sometimes
find useful features easily in some domains. Existing work
may provide a starting point. In (Roberts et al. 2008), for ex-
ample, structures such as causal graph were used to predict
the performance of planners on problem instances. We may
be able to exploit this connection in reverse to use problem
instance characteristics to suggest domain remodelling steps
via the modifications of such structures. In (Chrpa 2010),
some operators are restricted to be only applicable in the ini-
tial state (or the state before the goal) if they can be linked
to the problem instance’s initial state (goal) features. It may
be possible to use subsequent states resulting from the appli-
cation of such a restricted operator in the initial state (or the
regression of the goal state using these operators) as an addi-
tional source of features in the taxonomic syntax approach.

Conclusions

In this paper, we demonstrated the following:

1. Remodelling by both macro addition and operator re-
moval often significantly improves the planning speed in
a state-of-the-art planner, as compared to macro addition
only.

23

2. Instance-specific remodelling using machine learning can
lead to a significant improvement in the performance over
the domain-level remodelling with macro addition only or
with both macro addition and operator removal.

3. The lack of solubility preservation that accompanies the
operator removal can be empirically controlled in learning
new domain models.

Acknowledgement

This research is supported by the Natural Sciences and Engi-
neering Research Council of Canada, the Canadian Founda-
tion for Innovation, the Ontario Research Fund, Microway
Inc., and King Saud University.

References

Alhossaini, M., and Beck, J. C. 2012. Macro learning in
planning as parameter configuration. In Proceedings of the
25th Canadian Conference on Artificial Intelligence, 13-24.
Springer.

Alhossaini, M. 2013. Remodeling Planning Domains Using
Macro Operators and Machine Learning. Ph.D. Disserta-
tion, University of Toronto, forthcoming.

Botea, A.; Enzenberger, M.; Muller, M.; and Schaeffer, J.
2005. Macro-FF: Improving Al Planning with Automati-
cally Learned Macro-Operators. Journal of Artificial Intel-
ligence Research 24:581-621.

Chen, Y., and Yao, G. 2009. Completeness and optimality
preserving reduction for planning. In Proceedings of the
21st International Joint Conference on Artifical Intelligence,
1659-1664. Morgan Kaufmann Publishers Inc.

Chrpa, L. 2010. Combining learning techniques for classi-
cal planning: Macro-operators and entanglements. In Pro-
ceedings of the 2010 22nd IEEE International Conference
on Tools with Artificial Intelligence, volume 2, 79-86. IEEE
Computer Society.

Cohen, P. R. 1995. Empirical Methods for Artificial Intelli-
gence. The MIT Press, Cambridge, Mass.

Coles, A., and Smith, A. 2004. Marvin: macro-actions from
reduced versions of the instance. [International Planning
Competition.

Domshlak, C.; Karpas, E.; and Markovitch, S. 2010. To Max
or Not to Max: Online Learning for Speeding Up Optimal
Planning. Proceedings of the Twenty-Fourth Conference on
Artificial Intelligence (AAAI-2010).

Erol, K.; Nau, D.; and Subrahmanian, V. 1992. On the
complexity of domain-independent planning. Proc. AAAI-
92 381-386.

Ferrara, A.; Liberatore, P.; and Schaerf, M. 2005. The Com-
plexity of Action Redundancy. AI* IA 2005: Advances in
Artificial Intelligence 1-12.

Fikes, R., and Nilsson, N. 1971. STRIPS: A New Approach
to the Application of Theorem Proving to Problem Solving.
Artificial Intelligence 2(3/4):189-208.

Ghallab, M.; Nau, D.; and Traverso, P. 2004. Automated
Planning: Theory & Practice. Morgan Kaufmann; Elsevier
Science.

Haslum, P., and Jonsson, P. 2000. Planning with reduced
operator sets. In Proceedings of Artificial Intelligence Plan-
ning Systems (AIPS), 150-158.

Hoffmann, J., and Nebel, B. 2001. The FF Planning System:
Fast Plan Generation Through Heuristic Search. Journal of
Artificial Intelligence Research 14:253-302.

Hoffmann, J. 2001. Local search topology in planning
benchmarks: An empirical analysis. Proceedings of the
17th International Joint Conference on Artificial Intelli-
gence (IJCAI-01) 453-458.

Hutter, F.; Hoos, H.; Leyton-Brown, K.; and Stiitzle, T.
2009. ParamILS: An automatic algorithm configuration
framework. Journal of Artificial Intelligence Research
36(1):267-306.

Nebel, B.; Dimopoulos, Y.; and Koehler, J. 1997. Ignor-
ing Irrelevant Facts and Operators in Plan Generation. In
Proceedings of the 4th European Conference on Planning:
Recent Advances in Al Planning, 350. Springer-Verlag.

Newton, M.; Levine, J.; Fox, M.; and Long, D. 2008. Wiz-
ard: Compiled Macro-Actions for Planner-Domain Pairs.
Booklet for the 6th International Planning Competition
Learning Track.

Newton, M. 2008. Wizard: Learning Macro-Actions Com-
prehensively for Planning. Ph.D. Dissertation, Department
of Computer and Information Science, University of Strath-
clyde, United Kingdom.

Platt, J. 1999. Fast training of support vector machines us-
ing sequential minimal optimization. In Advances in kernel
methods, 185-208. MIT Press.

Roberts, M.; Howe, A. E.; Wilson, B.; and desJardins, M.
2008. What Makes Planners Predictable? In Proceedings
of the Eighteenth International Conference on Automated
Planning and Scheduling (ICAPS 2008).

Simon, H. A. 1973. The structure of ill-structured problems.
Artificial Intelligence 4:181-200.

Steel, R., and Torrie, J. 1960. Principles and procedures of
statistics: with special reference to the biological sciences.
McGraw-Hill Companies.

Vrakas, D.; Tsoumakas, G.; Bassiliades, N.; and Vlahavas, .
2003. Learning rules for Adaptive Planning. Proceedings of
the 13th International Conference on Automated Planning
and Scheduling, Trento, Italy 82-91.

Yoon, S.; Fern, A.; and Givan, R. 2008. Learning control
knowledge for forward search planning. The Journal of Ma-
chine Learning Research 9:683-718.

24

