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Abstract10

We present a novel scheduling model that leverages Constraint Programming (CP) to enhance problem11

solving performance in Temporal Planning. Building on the established strategy of decomposing12

causal and temporal reasoning, our approach abstracts two common fact structures present in many13

Temporal Planning problems – Semaphores and Envelopes – and performs temporal reasoning in a14

CP-based scheduler. At each search node in a heuristic search for a temporal plan, we construct and15

solve a Constraint Satisfaction Problem (CSP) and integrate feedback from the CP-based scheduler16

to guide the causal planning search towards a solution. Through experimental analysis, we validate17

the impact of these advances, demonstrating a significant reduction in both the number of states18

searched and in search time alongside an increase in problem-solving coverage.19
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1 Introduction26

Temporal AI Planning is an extension of classical AI planning that includes a representation of27

the duration of actions and reasoning about numeric variables that change over time [9]. For28

such a problem, a solution is a sequence of scheduled actions, called a plan, which transforms29

the world to a desired goal state from an initial description of the world. Unlike scheduling30

problems such as Job-Shop Scheduling [15], but similar to most planning problems, solutions31

to temporal AI planning problems do not have a pre-defined set of actions to execute, but32

rather actions must be both selected and scheduled by a planner.33

Planners designed to handle temporal problems typically take one of two approaches.34

Decision-epoch planners build a plan by adapting a classical planning approach where actions35

are selected and applied to a state to generate a new state, when a new action is started36

its effects are realised and the time of its end is added to a queue, stored in the state. The37

planner can then decide to apply another action at the current time or advances time until38

after the next action in the queue, in order to realise that action’s effects. Further actions39

can then be applied at this time point, with the process repeated until all goals are achieved40

and all executing actions have completed [7, 8]. In the decision-epoch approach, the planner41

reasons about both the causal and the temporal aspects of the problem.42

Decomposition planners separate causal and temporal reasoning [11]. The planner43

applies actions to states to generate an atemporal successor state, then checks the temporal44
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consistency of the partial plan for that state using a scheduler. If the resulting state is45

numerically and temporally consistent, additional actions can be applied to extend the plan.46

If the resulting state is not consistent, it is discarded and the planner explores the expansion47

of other states. This alternation between planning and scheduling continues until a goal48

state is achieved. Thus, the causal reasoning takes place in task planning, while the temporal49

reasoning is done using a sub-solver model such as a Simple Temporal Network [11] or a50

Linear Program [3].51

Decomposition Temporal Planning lends itself to transferring other temporal and/or52

combinatorial structures to the sub-solver, provided that it has the ability to model and53

solve such structures. This paper presents two contributions to decomposition approaches in54

temporal AI planning.55

1. We show that, through the use of a constraint-based scheduler, additional temporal and56

combinatorial reasoning can be transferred to the sub-solver by abstracting semaphore57

and envelope fact structures, reducing the number of states that the planner needs to58

explore.59

2. We show how this transfer also enables an increase in the feedback from the scheduler60

to the planner enabling the planning heuristic to identify dead-ends earlier and, thus,61

substantially reducing the search effort.62

Our experiments show that our approach leads to a significant reduction in states searched,63

increased coverage, and improved solve times in a range of International Planning Competition64

(IPC) benchmark domains. Moreover, because we use a preprocessing detection to identify65

these semaphore and envelope fact structures, there is no negative impact of our approach66

on domains where these structures do not exist. This paper demonstrates that CP can be a67

powerful tool for a kind of combinatorial and temporal reasoning that is traditionally solved68

inefficiently in the search, which is designed for causal reasoning in AI planners.69

These contributions are different from previous applications of Constraint Programming70

in Temporal Planning – such as CPT [18, 10] or EUROPA [1] – because previous approaches71

have directly solved the temporal planning problem. Moreover, our approach can model72

numeric resources and supports a temporal-numeric fragment of PDDL2.1 even though the73

performance improvements we demonstrate are derived from the temporal aspect of the74

problem.75

2 Background76

2.1 Temporal Planning77

We consider the fragment of PDDL 2.1 [9] planning problems supported by COLIN and78

POPF [3] and limit our attention to problems without continuous numeric effects, although79

our work could be extended to support them.80

We define a planning problem as a tuple ⟨F, V,A, I,G⟩. F is a finite set of facts. A fact81

f ∈ F is a proposition which, if present in a given state s, indicates that the fact is true. V82

is a finite set of numeric variables. I denotes the initial state. A state is a tuple ⟨Fs, ns⟩,83

where Fs ⊆ F and ns is a set of assignments to the variables in V . ns[v] denotes the value of84

variable v ∈ V in state s. A is a set of durative actions, representing operators that can be85

applied to states. G is a set of conditions that must hold true following execution of any86

valid solution plan.87

We begin by defining a condition ψ. Conditions can either be propositional (ψ ∈ F ) or88

numeric. Numeric conditions are defined as a tuple ψ = ⟨v op c⟩ such that op ∈ {≥,≤, <,>89
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,=} and c ∈ R. For a given state ⟨Fs, ns⟩, ψ is satisfied if it is a proposition where ψ ∈ Fs90

or it is a numeric condition where ⟨ns[v] op c⟩ is true.91

A durative action a ∈ A is defined as a tuple ⟨pre(a)⊢, eff(a)⊢, pre(a)↔, pre(a)⊣, eff(a)⊣, da⟩.92

pre(a)⊢ (pre(a)⊣) is a set of propositional and numeric conditions (preconditions) on the93

start (end) of the action a. pre(a)↔ are invariant conditions over the duration of action a94

that must be satisfied for all the time the action is executing. Individually we denote these95

preconditions as pre(a)p
{⊢,⊣,↔} for propositional conditions and pre(a)n

{⊢,⊣,↔} for numeric96

conditions. da is a pair ⟨dmin, dmax⟩ representing the minimum and maximum duration of97

the action a as positive real values.98

eff(a)⊢ (eff(a)⊣) are effects that occur at the start (end) of the action a and consist of99

a tuple ⟨eff+, eff−, effn⟩. eff+(eff−) is a set of propositions in F that are added to (deleted100

from) a state s to create the subsequent state s′ (e.g. Fs′ = (Fs \ eff−) ∪ eff+).101

effn is a set of numeric effects of the form ⟨v op c⟩, where op ∈ {+=,−=,=}, c ∈ R and102

v ∈ V . Numeric effects using the operators += and −= use the value of v in s, to calculate103

the value of v in the subsequent state s′. This is a commonly used restricted version of104

PDDL 2.1 numeric planning.105

The goal G is a set of propositional and numeric conditions. A state s |= G if s satisfies106

the propositional and numeric conditions in G.107

A plan π is a list of tuples of the form ⟨a, t, d⟩, with t representing the timestamp at108

which action a is applied and d representing the duration of a where dmin ≤ d ≤ dmax. A109

plan π is valid iff for all tuples ⟨a, t, d⟩ in π, pre(a)⊢ is satisfied at time t, pre(a)⊣ is satisfied110

at time t+ d, pre(a)↔ is satisfied at all points in the interval (t, t+ d). π is a solution if it is111

valid and the resulting state SG, when all actions have finished executing, satisfies G.112

2.2 Constraint Satisfaction Problems113

Formally, a Constraint Satisfaction Problem (CSP) is a tuple ⟨X,D,C⟩, where X is a set of114

n variables, D is a set of n domains corresponding to the variables in X and ∀d ∈ D, d ⊂ Z.115

C is a set of constraints. A constraint is an m-ary (m ≤ n) function c(v0, ..., vm) →116

{true, false} where vi ∈ di and di ∈ D represents the domain of variable xi. A constraint can117

be any mapping of an assignment for the variables in X to a truth value which indicates if118

the constraint is satisfied or not.119

A solution for a CSP ⟨X,D,C⟩ is a n-tuple V = ⟨v0, ..., vn⟩ representing an assignment120

of the value vi to the variable xi ∈ X where vi ∈ di and ∀c ∈ C, c(V ) = true.121

In CP-based scheduling, interval variables represent an optional time window. The122

domain of an interval variable is a set of the form {⊥} ∪ {[s, e)|s, e ∈ Z, s ≤ e} where s (e)123

represents the start (end) time of the interval. For an interval variable x, if x = ⊥ it is not124

present in the solution to the problem.125

A global constraint is a relation on an arbitrary number of variables, typically representing126

frequently observed combinatorial structure such as a set of variables all requiring pairwise127

different values. Explicit representation of such relations improves problem solving perform-128

ance through the use of inference (or propagation) algorithms designed for the corresponding129

structure [16].130

We use three common global constraints: noOverlap (or disjunctive), alternative, and131

span.132

▶ Definition 1. noOverlap(S, υ) is a global constraint over a set of interval variables S, and133

numeric constant υ where for any two present intervals in S, xi and xj , start(xi) ≥ end(xj)+υ134

or start(xj) ≥ end(xi) + υ holds.135

CP 2024



13:4 Using Constraint Programming for Disjunctive Scheduling in Temporal AI Planning

▶ Definition 2. alternative(xa, S) is a global constraint over an interval variable xa, and a136

set of interval variables S where xa ̸∈ S. xa is present in the solution, iff exactly one interval137

x ∈ S is also present. When xa is present, start(xa) = start(x) ∧ end(xa) = end(x).138

▶ Definition 3. span(xc, S) is a global constraint over an interval variable xc and a set of139

interval variables S, xc ̸∈ S, that ensures that all present intervals in S are scheduled between140

the start and end of xc and that interval xc starts with the start of the first present interval141

in S and ends with the end of the last present interval in S. xc is absent iff all intervals in142

S are absent.143

2.3 Planning through Decomposition144

Decomposition-based planners separate temporal reasoning from causal reasoning by relaxing145

the problem to a causal representation and finding a solution to this representation using146

search. In OPTIC, an A∗ search with the Metric Temporal Relaxed Planning Graph (TRPG)147

[13, 6] heuristic is used to explore the state space. To reason about temporal planning,148

OPTIC splits durative actions into snap actions.149

▶ Definition 4. An action a of the form ⟨pre(a)⊢, eff(a)⊢, pre(a)↔, pre(a)⊣, eff(a)⊣, da⟩, can150

be abstracted as a pair of snap actions ⟨a⊢, a⊣⟩: a tuple comprising ⟨pre(a)⊢, eff(a)⊢⟩151

(⟨pre(a)⊣, eff(a)⊣⟩). Snap actions represent the instantaneous start and end preconditions and152

effects of a durative action; the duration and invariant conditions must be tracked separately.153

The search is modified to ensure that each start snap action has a corresponding end154

action and that invariant conditions between start and end snap actions are satisfied [3].155

The successor of a state s reached by applying the sequence of snap actions (partial plan)156

πs are each generated by applying a new snap action a, resulting in a new state with partial157

plan π′ (a appended to πs). From π′, OPTIC creates a scheduling problem τ as follows [4]:158

A set of temporal constraints of the form min ≤ t(a′) − t(a) ≤ max where a, a′ ∈ π′ and159

min and max are constants.160

If the temporal constraint represents an ordering between two snap actions min = ϵ161

and max = ∞. Ordering constraints ensure that (1) if an action has a precondition162

on a fact p then it is ordered after the last adder of p (i.e., the last action that adds163

p); (2) if an action adds p it is ordered after the last deletor of p and (3) if an action164

deletes p it is ordered after the last adder and all conditioners on p since it was last165

added (4) if an action contditions on or effects a variable v it is ordered after the last166

action to condition on or effect v.167

If the temporal constraint represents the duration between the start and corresponding168

end snap action for duration action a, min = dmin and max = dmax where da =169

⟨dmin, dmax⟩. Duration constraints ensure that the time between the start and end170

snap actions in any valid solution for τ is consistent with duration bounds of the171

durative action they represent.172

In the presence of continuous or duration-dependent effects these are encoded in the173

scheduling problem over the values of numeric variables (v in V ) before or after each174

snap action.175

In every state generated, a scheduling problem τ is constructed from the partial plan π′.176

τ is solved using a sub-solver such as an STN-based solver, Linear Program (LP) or Mixed177

Integer Program (MIP) which attempts to find a set of action timestamps that satisfy the178

constraints.179
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If there is no feasible timestamp assignment, the state is temporally inconsistent and is180

pruned. If an assignment is found and the state satisfies the goal, then the plan π constructed181

from the timestamps is a solution. If the state is consistent but not a goal, then control182

returns to the planner to continue its search.183

3 Building a CP model from π′
184

We now construct a drop-in CP replacement for the STN/MIP scheduler currently used in185

OPTIC, based on the temporal and numeric constraints described in Section 2.3. Consider a186

partial plan π′ and a scheduling problem τ ; we construct a CSP ⟨X,D,C⟩ as follows.187

Variables188

For each start snap action a⊢ in π′ we add an interval variable xa = [s, e) to X regardless of189

whether a⊣ exists in π′. s represents the timestamp of snap action a⊢, and e of a⊣, if a⊣ is190

present. If a⊣ is not part of the plan π′, then we still represent the unclosed duration action191

that corresponds to a⊢ with an interval and constrain its duration according to the duration192

of the durative action it represents, however there will be no ordering constraints on a⊣ (and193

consequently on e) because the planner has yet to reason about the addition of a⊣ to the194

plan. This allows the scheduler to reason with xa as if it were a closed action, preserving the195

duration. In any circumstance, even if the CP solver concludes that a schedule exists for a196

plan π′ with an unclosed action, the plan is not valid and a final temporal consistency check197

will occur once a complete plan is produced.198

If V ̸= ∅ we add two integer variables xa,v and x′
a,v for each v ∈ V and each snap action199

a ∈ π′. These variables represent the value of variable v before and after the application of200

the snap action.201

Temporal Constraints202

For each temporal constraint in τ of the form min ≤ t(a′) − t(a) ≤ max, a constraint is203

introduced according to whether the snap action a (a′) correspond to a start a⊢ (a′
⊢) or end204

a⊣ (a′
⊣) snap action. Constraints are mapped accordingly as follows. If a and a′ are start snap205

actions then min ≤ start(x′
a)−start(xa) ≤ max is introduced. If a and a′ are end snap actions206

then min ≤ end(x′
a) − end(xa) ≤ max is introduced. In the case that a is a start snap action207

and a′ is an end snap action (or vice versa) a constraint min ≤ end(x′
a) − start(xa) ≤ max208

(min ≤ end(x′
a) − end(xa) ≤ max) is introduced.209

Numeric Constraints210

There are two types of numeric constraints which we model: conditions and effects. A211

numeric condition as defined in the planning problem with the form ⟨v{≥,≤, <,>,=}c⟩212

occurring in pre(a), is imposed on xa,v as it represents the value of the variable v before the213

application of snap action a e.g. xa,v{≥,≤, <,>,=}c.214

If a numeric effect exists in effn(a) of the form ⟨v{+=,−=,=}c⟩ then the resulting215

constraint is x′
a,v = xa,v{+=,−=,=}c. If no numeric effect exists then x′

a,v = xa,v.216

These constraints model discrete numeric effects within the scheduling problem. In217

problems where there are no continuous or duration-dependent effects, these need not be218

reasoned about in the scheduler (since, given the ordering constraints OPTIC generates, the219

timestamps assigned to actions cannot affect the value of numeric variables), so an STN,220

without any numeric constraints can be used to solve the scheduling problem. However, in221

CP 2024
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the presence of either of these, the numeric preconditions and effects must be modelled to222

ensure temporal-numeric constraints are satisfied. The approach we take to modelling these223

in our CSP model, mirrors that used in OPTIC. We limit ourselves to discrete effects, here224

we will use these later in our feedback mechanism from the scheduler to the planner; but in225

general the same constraints over these variables that are used in OPTIC’s MIP can be used226

to represent continuous/duration dependent effects in a CSP.227

In OPTIC, when constructing a scheduling problem τ , a total ordering is imposed between228

snap actions which condition on or effect the same variable v (regardless of whether this is229

necessary). We could in principle relax these constraints, but since our focus here is not230

specifically on numeric planning we maintain them as is. The initial value of xa′,v, therefore,231

is constrained to be equal to the final value of v in a (xa′,v = x′
a,v) as we know this would232

have been the last time the value of the variable v changed. If a is the first snap action π′ to233

condition or effect on v, then xa,v takes the value of v in the initial state (xa,v = nI [v]).234

Domain235

The domain da is defined for an interval variable xa as the interval [0, h] where h represents236

the sum of the maximum duration of all actions in the plan π′, plus ϵ multiplied by the237

number of actions in the plan. The horizon h is an upper bound as in the worst case each238

action will be executed without overlap with any other.239

The domain dv – which applies to all integer variables representing v – is an interval240

[minv,maxv] defined by the sum of all positive numeric effects (+=) effects applied to the241

initial value maxv, and the sum of all negative effects (−=) minv. In the event assignment242

(= c where c is some constant) occurs, the interval is [c− minv, c+ maxv].243

Temporal planning and CP scheduling problems have adopted different conventions for244

representing the timing of events. As shown in the definition of an interval variable, in CP,245

time intervals are considered to be open on the right, thus allowing one interval to end at246

time t and another to begin at the same time even if they are constrained to not overlap. In247

contrast, temporal planning uses ϵ as the smallest representable unit of time. Actions that248

are constrained to not overlap must be separated by at least ϵ. To handle this mismatch, we249

represent ϵ in the CP model as one unit of time and thus force an extra gap between actions,250

consistent with the planning definition. Our CP scheduler does not affect OPTIC’s support251

for self-overlapping actions, is equivalent to the current STN-based approach in OPTIC, and252

as such does not impact the soundness or completeness to OPTIC.253

4 Abstracting Semaphores and Envelopes254

So far our temporal reasoning problem is identical to that solved by the STN solver in255

OPTIC. In this section, we extend our temporal representation to take advantage of CP’s256

greater expressivity and solving power.257

Semaphore and envelope facts [11] are causal modelling patterns that, respectively, prevent258

and require the concurrent execution of a set of actions. Because these are facts, and therefore259

a causal consideration, they have been considered during causal reasoning, despite being a260

temporal structure. We formally define semaphore and envelope facts as follows.261

▶ Definition 5. A semaphore fact f is a fact such that f ∈ I and ∀a ∈ A exactly one of262

the following holds263

a is a mutual exclusive action, that is, f is in and only in pre(a)p
⊢, eff(a)−

⊢ and eff(a)+
⊣ ,264

or265
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a is an unrelated action, that is f is not in any precondition or effect of a.266

Definition 5 ensures that all actions that condition on a semaphore fact delete it at the267

start and add it at the end, ensuring actions that condition on a semaphore are mutually268

exclusive (cannot execute in parallel). Requiring all other actions to be unrelated ensures269

the semaphore fact serves only to enforce mutual exclusion and has no other function.270

▶ Definition 6. An envelope fact f is fact such that f ̸∈ I and ∀a ∈ A exactly one of the271

following holds272

a is an envelope achiever, that is, f is only in eff(a)+
⊢ and eff(a)−

⊣ ,273

a is an envelope conditioner, that is, f is in pre(a)p
↔ and optionally in pre(a)p

⊢ and/or274

pre(a)p
⊣ and f is not in eff(a)⊢ and eff(a)⊣, or275

a is an unrelated action, that is, f is not in any of the sets: pre(a)p
⊢, eff(a)⊢, pre(a)p

↔,276

pre(a)p
⊣, or eff(a)⊣.277

An envelope fact ensures that every envelope conditioner executes concurrently with some278

envelope achiever. Definition 6 ensures that an envelope achiever adds the envelope fact279

at its start and deletes the same fact at its end, thus creating a window where this fact is280

available. The definition also states that an envelope conditioner has an invariant condition281

and thus must execute concurrently with some envelope achiever. An unrelated action as282

defined in Definition 6 means an action can only act as an achiever or conditioner on an283

envelope fact and not use an envelope fact for any other purpose.284

Definition 6’s requirement for all other actions to be unrelated ensures that (i) no other285

actions adds the envelope fact, so all conditioners must occur within an achiever, (ii) no286

other actions delete the envelope fact, thus it remains throughout the entire execution of an287

envelope achiever, and (iii) no other actions condition on the envelope facts at only the start288

or end and thus only need to be executed partially concurrently with an achiever.289

Figure 1 Envelope fact g enforces concurrency with a work shift whilst semaphore fact f prevents
more than one work activity from happening at a time. A fact appearing above (below) an action
indicates it is a condition (effect) respectively. Position indicates whether the fact is a start, invariant,
or end condition or effect. ¬f denotes that f is being deleted (made false).

Figure 1 shows how a semaphore f and envelope g interact. The blue “work shift” action290

is an envelope achiever of g, into which a number of work activities have to be scheduled.291

These activities – preparing Chicken, Pasta and Noodle dishes – are mutually exclusive due292

to semaphore fact f and are also envelope conditioners on g.293

4.1 Abstracting Semaphore Facts294

Current state-of-the-art decomposition planners search over all total ordering constraints295

between durative actions ai and aj that condition on semaphore fact f .296

Figure 2 shows how the mutual exclusion of semaphore f creates two alternate plans297

to explore to achieve the same state. If there are n actions required to achieve goal G that298

condition on the semaphore fact f , there are n! orderings of those actions to be considered.299

CP 2024
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Figure 2 For two mutually exclusive actions, two orderings exist that achieve the same state.

However in many cases, side effect constraints and other optimisations [5] can reduce the300

search space.301

To abstract a semaphore fact f , from a planning problem ⟨F, V,A, I,G⟩, we create a set302

of actions mf = {a : a ∈ A, f ∈ pre(a)p
⊢}. We perform the following set operations ∀a ∈ mf :303

pre(a)p
⊢ \ {f}, eff(a)−

⊢ \ {f}, and eff(a)+
⊣ \ {f}. Finally, we remove f from the initial state I.304

For the scheduling problem corresponding to partial plan π′, a new mutual exclusion305

constraint is added for the actions in π′ that appear in the set of actions mf .306

▶ Definition 7. A mutual exclusion constraint is a noOverlap constraint of the form307

noOverlap({xa ∈ X : a ∈ π′ ∧ a ∈ mf }, ϵ).308

Following Definition 5, we demonstrated that the only purpose of a semaphore fact was to309

ensure mutual exclusion between actions conditioning on it. A semaphore fact has no implied310

ordering between actions that condition on it. Search in OPTIC imposes a total ordering311

among such actions (due to ordering each conditioner after the most recent adder), with312

different orderings considered by exploring different plans. We replace the total orderings313

imposed at the planning level, with a mutual exclusion constraint imposed during scheduling.314

The scheduler will consider any ordering of actions in the mutual exclusion constraint that315

respects ordering constraints imposed by other facts (since these still remain as temporal316

constraints). As a result, the substitution preserves soundness. By considering all sound317

partial orderings, the substitution maintains completeness.318

4.2 Abstracting Envelope Facts319

An envelope achiever of fact g creates a time window that an envelope conditioner on g320

must execute within. With multiple achiever and conditioner actions, a set of possible time321

windows is defined and the planner must decide which envelopes each conditioner must322

execute within.323

Figure 3 For two envelope achievers (work shift 1 and 2); prepare chicken could be assigned to
either.

In Figure 3 two achievers of g – “Work Shift 1” and “Work Shift 2” – exist and “Prepare324

Chicken Dish” could be scheduled within either; resulting in two different assignments to325
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consider. The number of assignments grows exponentially with both the number of envelope326

achievers n and the number of envelope conditioners m provided n > 1.327

Assignment decisions are only important if envelope conditioners cannot be executed328

concurrently. If all envelope conditioners can execute concurrently, an envelope achiever large329

enough to execute concurrently with the longest conditioner can satisfy all conditioners.330

To abstract an envelope fact g from a planning problem ⟨F, V,A, I,G⟩, we create two sets331

of actions achieversg = {a : a ∈ A, g ∈ eff(a)+
⊢ } and conditionersg = {a : a ∈ A, g ∈ pre(a)p

↔}.332

∀a ∈ achieversg, we perform eff(a)−
⊣ \ {g}. ∀a ∈ conditionersg we perform the following set333

operations: pre(a)p
↔ \ {g}, pre(a)p

⊣ \ {g}, and pre(a)p
⊢ ∪ {g}.334

To ensure that envelope conditioners are scheduled concurrently with an envelope achiever,335

a new envelope constraint comprised of new variables and a set of constraints is added to the336

scheduling problem for the partial plan π′.337

▶ Definition 8. An envelope constraint for an envelope fact g, with sets of actions achieversg338

and conditionersg and partial plan π′, comprises new interval variables xa,c,∀a ∈ achieversg,∀c ∈339

conditionersg, and a dummy optional interval xa,dur for all a ∈ achieversg and the following340

constraints:341

∀c ∈ π that also appears in conditionersg, alternative(xc, {xa,c : a ∈ achieversg ∩π′}). xc342

is the interval variable in X representing the conditioner action c. Exactly one achiever,343

a, for each conditioner is assigned by enforcing the presence of one optional interval344

variable xa,c.345

∀a ∈ π′ that also appears in achieversg, span(xa, {xa,c : c ∈ conditionersg} ∪ {xa,dur}).346

xa is the interval variable in X representing the achiever action a. This ensures that347

each envelope conditioner executes concurrently with the envelope achiever assigned in348

the alternative constraint.349

The dummy optional interval xa,dur ensures that the conditioners on an envelope do not350

have to be scheduled such that one starts exactly at the start of xa and one finishes exactly351

at the end. The dummy action can be used to satisfy this condition imposed by the span352

constraint, and thus we do not compromise completeness (as the planning model does not353

necessarily imply this constraint).354

Following Definition 6, we demonstrated that the only purpose of an envelope fact in355

the domain was to ensure that all envelope conditioners execute entirely within envelope356

achievers. An envelope fact does not imply an assignment of a specific conditioner to a357

specific achiever.358

In OPTIC, an assignment of a conditioner to an achiever is done during search. Search359

first adds the start of an achiever (a⊢), then the start of the conditioner (c⊢), imposing an360

ordering constraint in τ : t(a⊢) < t(c⊢). Search then adds the end of the conditioner (c⊣).361

Finally, search adds the end of the achiever (a⊣), ordering the end of the achiever after the362

end of the conditioner (t(c⊣) < t(a⊣)). The result of these constraints is a total ordering363

(t(a⊢) < t(c⊢) < t(c⊣) < t(a⊣)).1364

In imposing these ordering constraints in the scheduling problem τ , search assigns a365

conditioner to an achiever and enforces their concurrent execution using the same constraints.366

Search in OPTIC considers a different assignment of an achiever to a conditioner, by367

performing the same process described above, but using different achievers.368

1 OPTIC may choose to add some other action or actions between the addition of these individual snap
actions. This is a simple example of how envelope concurrency is achieved.
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By abstracting an envelope fact, leaving only a start add effect for achievers and a start369

precondition for conditioners, the only ordering constraint added by OPTIC to τ orders all370

conditioners after the first achiever; an ordering implied in any valid envelope assignment371

and execution. By using an alternative constraint, the scheduler can consider the assignment372

of a conditioner to any achiever. Meanwhile, the span constraint ensures the concurrent373

execution of a conditioner with the achiever it is assigned to.374

Because we only abstract envelope facts, other constraints in τ are preserved (still375

generated by OPTIC’s machinery). The assignment of a conditioner to an achiever will only376

be considered by the CP Scheduler if that assignment respects all other constraints in τ . As377

a result, this abstraction does not compromise soundness.378

By allowing the CP Scheduler to consider different assignments of conditioners to achievers,379

we ensure that, in one state, the scheduler considers all orderings that OPTIC considers over380

a number of states. We therefore do not compromise completeness.381

5 Improving Feedback to the Planner382

The abstractions described in Section 4 and allow us to transfer some reasoning about383

orderings of actions in the planner’s search to reasoning with powerful global constraints in a384

CP sub-solver. These abstractions also allow us to enhance the communication between the385

causal reasoning in task planning and the temporal reasoning in scheduling.386

In delete-free relaxation heuristics [12], envelopes are a particular challenge [11] because387

once an envelope fact g is achieved, there is no further value to the heuristic to achieve388

g again. Without reasoning about how much time is required for envelope conditioners,389

search has to blindly add achievers until sufficient time is available for the scheduler. Yet390

if envelopes have limited time, it is critical that further achievers are added. The need for391

multiple achievers is greatest when conditioners are mutually exclusive392

In Section 4.2, when an envelope fact g was abstracted, the add effects in all achievers were393

preserved and a start precondition was added to all conditioners on g. This transformation394

forces search to add at least one achiever prior to adding any conditioners for envelope fact g.395

To guide search, we now add a new subset of numeric variables to the set V for a planning396

problem ⟨F, V,A, I,G⟩. These new numeric variables – Envelope Time Tracking variables –397

create a producer-consumer relationship between envelope achievers and mutually exclusive398

conditioners. Envelope Time Tracking variables are added for each semaphore fact f and399

envelope fact g.400

▶ Definition 9. A time tracking variable is a numeric variable vf,g ∈ V . The initial state401

value of variable vf,g is 0 (nI [vf,g] = 0).402

Each achiever a ∈ achieversg has a new start effect vf,g += dmax. Meanwhile each403

conditioner c ∈ conditionersg ∩ mf has a new start condition vf,g ≥ dmin and a new start404

effect vf,g −= dmin.405

The variable vf,g increases by the maximum duration of each achiever of g added to π′.406

The variable vf,g decreases by the minimum duration of each conditioner of g in mf added407

to the partial plan π′. vf,g represents a trivial upper bound on the amount of free time408

remaining in envelope achievers for envelope conditioners in mutual exclusion mf .409

The introduction of the precondition vf,g ≥ dmin means that, across all achievers, there410

must exist enough free time to fully contain a conditioner before the search can add it.411

Pruning based on the value of vf,g does not compromise completeness because it is an412

overestimate and so we necessarily need to add another achiever before we can fit any further413

conditioners.414
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5.1 Prioritising More Easily Schedulable States415

If π′ is shown to be temporally consistent, the scheduler produces a plan π which includes a416

valid schedule for all actions in the plan. We can use this schedule to identify when adding a417

new action to the plan will likely lead to a trivially schedulable partial plan; and when we418

might need to add another envelope achiever in order to find a solution.419

For a given envelope achiever a in π we can compute the maximum free time, va
f,g, by420

summing the available free time in a in the computed schedule.421

▶ Definition 10. For an envelope achiever a, va
f,g = da −

∑
dc, ∀c ∈ conditionersg ∩ mf422

where conditioner c is in the plan π and scheduled concurrently with a (i.e. in π, tc is in the423

interval [ta, ta + da]).424

Variable va
f,g allows us to determine the maximum free space within a single envelope425

achiever a in a plan π. Figure 4 shows an example of the calculation in Definition 10, where426

the maximum possible free space within the envelope a is 10 time units.427

Figure 4 illustrates an envelope achiever a of envelope fact g to which several conditioners have
been assigned in a plan.

vπ
f,g is calculated for a plan π using Definition 10, a semaphore fact f and envelope fact g428

as follows:429

▶ Definition 11. For a plan π, a semaphore fact f , and an envelope fact g is vπ
f,g = max(va

f,g)430

(Definition 10), ∀a ∈ achieversg, where a is in the plan π.431

vπ
f,g gives us an estimate across the plan π of the longest conditioner we could schedule432

within any achiever. Whilst this bound is a good estimate of the upper bound, it is not a433

guaranteed maximum because it is possible that reassigning conditioners to different achievers434

could increase the value of va
f,g for some achiever a. Thus, we cannot use vπ

f,g for pruning as435

we do with vf,g. Instead we favour expanding states that are more likely to be schedulable:436

any state generated by applying an action for which vπ
f,g ≤ dmin is added to a second open437

list that is only expanded if the first open list becomes empty.438

This manipulation guides search to favour adding conditioners whose duration fits within439

an existing achiever or adding another achiever first; before attempting to add further440

conditioners. Such a preference is useful in counteracting the heuristic blind spot discussed441

earlier, in which there is no heuristic guidance to open new envelopes. Prioritisation of states442

in this way does not compromise completeness because, whilst it would not be sound to443

prune states based on vπ
f,g, the use of a second open list ensures that these states will be444

explored eventually if required.445

This type of communication between the planner and scheduler is novel. Where previous446

communication has been limited to constraints and inconsistencies, here the scheduler is447

communicating temporal information that is incorporated into the planner’s search, opening448

the possibility of the communication of other temporal search guidance.449
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IPC Domain No. of Problems Type
cafe 29 both

crew planning 29 both
driverlog (shift) 20 envelopes only

match 20 both
pipes (no tankage) 30 envelopes only

turn and open 20 envelopes only
satellites 30 both

TMS 20 both
Table 1 Benchmark domains used.

6 Evaluation450

To evaluate our transformations, we identify a wide variety of International Planning Com-451

petition (IPC) domains from across a number of years that contain envelopes and (optionally)452

semaphores. Table 1 shows the domains used. The use of our transformations and the CP453

scheduler is automatically decided based on the presence of envelope and/or semaphore facts,454

in a preprocessing step that takes < 0.001s, if none are detected the planner runs exactly as455

before. Therefore performance on domains which do not contain envelopes or semaphore456

facts is unaffected; thus we do not consider these in our evaluation.457

We compare the performance of the CP Scheduling approach to the baseline standard458

approach in OPTIC. The two configurations we tested are:459

The base configuration is a version of OPTIC [2], a leading general-purpose temporal-460

numeric planner. OPTIC uses an STN-based scheduler with a P-time complexity.2461

The experimental configuration is the base configuration plus a CP scheduler that includes462

our abstraction of semaphores and envelopes and the time tracking variables. The463

CP scheduler is configured to return the first feasible solution found. The search and464

memoization machinery of OPTIC is otherwise unchanged.465

We experimented with a configuration that caches the scheduler solution to allow warm466

starting in subsequent states. This was not successful because the memory overheads of467

storing a CP solution in every state are too high, and the planner began to hit the memory468

limit.469

All problems were executed on an Intel i7-8650U 1.9GHz machine with 3GB of memory470

and a search time limit of 30 minutes. We use IBM’s CP Optimizer 22.1.0 as our CP471

sub-solver. Each plan is validated using VAL [14]. We note that all unsolved problems were472

the result of search timeout, rather than memory limits.473

The objective of this evaluation is to investigate whether the transformations reduce the474

number of states explored, by replacing multiple planning states with a single state with a475

less constrained partial order plan and increased search guidance through temporal feedback476

from the scheduler. We go on to investigate whether planner performance is improved as a477

result. Thus our evaluation focuses on comparing the two scheduling approaches within the478

same planner.479

2 OPTIC has both an STN and a MIP scheduler which it chooses based on the nature of the problem.
None of these problems have continuous numerics, so OPTIC defaults to the STN scheduler.
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Figure 5 Comparison of base and experimental configuration, by states, time and makespan.
Points on the far right/top axis indicate problems not solved by the base/experimental configuration
respectively.

6.1 Reduction in States Generated480

The graph of states generated in Figure 5, shows that the experimental configuration reduces481

the number of states generated across all domains. The shift of the disjunctive reasoning,482

created by semaphore and envelope facts, from the planner to the scheduler means fewer483

disjunctive decisions are made in planning search and consequently fewer states are generated.484

Domains with a modest reductions in the number of states generated, such as the Match485

domain and Cafe domain, are a result of the underlying envelope and semaphore structure.486

In the Match domain, the goal is to mend a set of fuses in a power outage where matches487

must be lit to provide light. Each mend fuse action is mutually exclusive, and any fuse can488

be fixed whilst any match is lit. Each match can be used to repair at most two fuses, and the489

goal is for all fuses to be fixed with the matches provided. Matches are symmetrical; therefore,490

reordering how matches are lit does not make a temporally inconsistent partial plan consistent,491

so abstracting mutual exclusion is redundant. For the envelope assignment problem that492

exists between matches and fuses, each match is equally capable of mending each fuse. Thus493

the choice of assignment is also redundant. The only benefit of the transformations described494

is in guiding search to add sufficient matches to mend all fuses.495

Cafe has a similar structure to Match, with three distinctions. Firstly, Match consists496

of one “temporal” resource being consumed: matches. In Cafe, there are two symmetrical497
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IPC Domain Problems Base Experimental
cafe 29 7 8
crew planning 29 7 8
driverlog 20 3 8
match 20 19 19
pipes 30 8 12
turn and open 20 8 8
satellites 30 7 13
TMS 20 1 2

Table 2 No. of Problems solved by base and experimental configurations.

resources, Ovens and Cooks. Ovens and Cooks are not a consumable resource, i.e. they can498

be reused to complete other actions. The final distinction is that the meals being prepared499

have different durations, whereas each fuse takes the same amount of time to fix in Matches.500

Despite these differences, they are otherwise very similar domains and therefore experience a501

similar issue where searching symmetrical space yields similar generated state space to the502

base configuration.503

6.2 Coverage504

Table 2 shows the coverage (number of problems solved) for the base and experimental505

configurations. The experimental configuration performs as well or better than the baseline506

for all domains, solving a superset of the instances that the baseline solves. In the Driverlog,507

Satellites and Pipes domains the experimental configuration increased coverage dramatically.508

Across the 198 problems we evaluated, coverage rose from 30.3% in the base configuration to509

39.3% in the experimental configuration. Because these transformations are only applied in510

domains where semaphores or envelopes exist, coverage in other domains is unaffected.511

The improvements in coverage are a reflection of the reduction in states generated.512

The Driverlog and Pipes domain, which experienced larger reductions on smaller problems,513

increased coverage as their respective problem sets scaled.514

6.3 Search Time515

The graphs of states generated and search time in Figure 5 have a similar spread, with516

a downward shift for points in the search time graph. To understand this shift, Table 3517

presents the states generated per second. The experimental condition has an average 1.69518

fold increase in time taken per state compared to the baseline.519

The increased time per state is a result of the two types of scheduler used. The base520

configuration solves a P-time scheduling problem each time a state is generated whereas521

the experimental configuration solves an NP-complete scheduling problem. As a result of522

the difference in complexity, it is to be expected that the CP solver takes longer per state.523

A sufficiently large reduction in the number of states generated results in a reduction in524

the search time, in spite of the increased overhead per state, as seen by the solutions that525

timed-out for the base configuration.526

In domains where the experimental configuration outperforms the base configuration in527

states per second (Cafe, Crew Planning and Turn and Open), we attribute this to the heavily528

constrained nature of the scheduling problems within these problems. This constraining529

makes the search space for the CP solver significant smaller when compared to other problems.530
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IPC Domain Base Experimental Ratio
Cafe 882 992 0.89
Crew Planning 747 759 0.98
Driverlog 891 204 4.37
Match 8696 5703 1.52
Pipes 1339 1224 1.09
Turn and Open 354 1184 0.3
Satellites 475 178 2.67
Average 1912 1464 1.69

Table 3 States per second, and ratio (base/experimental). TMS excluded due to insufficient
data.

6.4 IPC Benchmark Score531

In the temporal track of the IPC, a benchmark score is used to compare planners [17]. For a532

given problem, let T ∗ be the minimum search time in seconds required by any planner to533

solve the problem. A planner that solves the problem in search time T (in seconds) gets a534

score of 1
1+log10(T/T ∗) . If a configuration does not solve a problem, it receives a score of 0.535

Search times of less than one second are rounded up.536

Across the domains presented in this evaluation, the base configuration achieved a score537

of 41.6, whilst the experimental configuration achieved one of 78.538

To restate, these transformations and the CP scheduler are only applied in problems539

where a semaphore or envelope fact is detected. Thus, these transformations represent a net540

improvement on the IPC score of the base planner. The performance of OPTIC in all other541

domains remains unaffected.542

6.5 Makespan543

Makespan is broadly equivalent across all mutually solved problems. This is primarily because544

the envelope actions somewhat artificially determine the makespan of the plan, even if the545

conditioner actions are scheduled more efficiently, so the scope for improving makespan is546

limited in most of domains. The one exception is a slight reduction in makespan for the547

experimental configuration in the Turn and Open domain. The difference can be attributed548

to the reallocation of disjunctive reasoning to the CP scheduler.549

States generated during search by the base configuration are more constrained and have550

a stricter ordering than propositionally and numerically equivalent states generated by the551

experimental configuration. A single state represents more partial-orderings of the relaxed552

plan that achieves it in the experimental configuration. This can result in a reduction or553

increase of the makespan depending on the solution that the CP scheduler finds to the554

envelope allocation and mutual exclusion problems.555

6.6 Evaluating Individual Abstractions556

As part of our evaluation, we also evaluated abstractions individually. We saw no significant557

performance improvements from abstracting envelopes or semaphores alone: our improve-558

ments lean heavily on the interactions between envelopes and semaphores, in particular, the559

constraining effect of envelopes relative to the consumptive effect of semaphores.560

We also evaluated using the envelope and semaphore abstractions without the time561

tracking variables defined in Section 5. Experimentally, we saw that the number of expanded562
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states is 93% of that of the base configuration compared to the experimental configuration’s563

48%. The overall run-time was similarly impacted. When excluding Time Tracking Variables,564

there was no increase in coverage or improvement in makespan compared to the base565

configuration. These results suggest that the enhanced search guidance provided by the novel566

communication from the sub-solver embodied in these variables is a key to the improved567

performance that we observed.568

7 Conclusion569

By abstracting semaphores and envelopes, we remove two forms of disjunctive temporal570

reasoning from the planning level that cause exponential state space growth in temporal-571

numeric planning problems. Introducing new numeric variables to represent the available time572

within envelope achievers and using these variables as a means to communicate remaining573

envelope time to the planner further guides search and further reduces the state space.574

The reductions in search space show that there are significant improvements to be575

made in more complex decomposition approaches. This new abstraction and decomposition576

demonstrates that a more expressive scheduler can improve coverage, reduce search space and577

reduce search times. This work opens the door to further exploration of how planning decisions578

are divided between task planning and CP-based scheduling and how an appropriate division,579

further exploiting the strengths of the CP sub-solver, can be used to yield improvements in580

coverage and speed.581
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